Test Driven Development

Workshop

Exercise Guide

Exercise 1: JUnit

a. Merge Join

Objectives

The principal objective of this exercise is to get you to think about what it is to develop a suitable set of tests for an existing body of code which has been developed without any tests, to understand the importance of tests, and how they can help you prove the correctness of an application.

Problem statement. Merge Join (or Sort Merge Join) is an algorithm used by RDBMSs (relational database management systems) to join together two sets of data, such as relational tables, to produce a new data set. The criterion for joining two records from the two sets is that they should share the same value in some key column. The essential idea behind the algorithm is to order the two data sets on that key column, and then go through the two sets, comparing the current value of the key in each. If the keys are the same, the two records can be combined – and then both data sets can be advanced, and the next pair of keys can be compared. If the key on the left data set is earlier than the key on the right, there is no match, and we need to advance the set on the left to get its next key, and redo the comparison (without advancing the set on the right). Conversely if the key on the right is less than the key on the left.
Below are two classes which are candidate implementations of a merge join, with inner join semantics. Your task is to develop a set of tests for both classes, to verify whether they are correct or not. If a test reveals that the application code is incorrect, then you should correct the application code. You are not permitted to change the public interface of these two classes (you should assume there is or will be a body of other code which is a client to it, and would be broken if the method signatures were to change.) You can, if you really find it necessary, add a method to a class to make it more testable, but you should do so taking care not to break encapsulation.

Start by developing a DataSetTest class, testing all the public methods in DataSet. (Note that for simplicity a DataSet here consists of a single column of values, which is the key column – so that we can concentrate on the essential algorithm, but it could easily be extended to two dimensions, like a database table). Only when you are fully satisfied that that class is fully tested, move on to MergeJoin.

The essential requirement which this version of MergeJoin must satisfy is this. Given two DataSets consisting of these two sets of keys,

-22, 0, 37, 111

-33, 0, 12, 37

it should produce a new DataSet consisting of the items in common, in order: 0, 37. But you should test that it works with a variety of cases: identical data sets, completely disjoint data sets, data sets unequal in length, and even a non-empty with an empty data set.

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

public class DataSet {

public static final int ENDPOS = -1;

private List<Integer> list;

private int position = 0;

public DataSet() {

this(new ArrayList<Integer>());

}

public DataSet(List<Integer> list) {

this.list = list;

}

public int getPosition() {

return position;

}

public Integer getKey() {

return list.get(position);

}

public boolean advance() {

if (position == list.size() - 1 || position == ENDPOS) {

position = ENDPOS;

return false;

}

position++;

return true;

}

public void add(int key) {

list.add(key);

}

public boolean isPastEnd() {

return position == ENDPOS;

}

}

public class MergeJoin {

// Both left and right must be sorted

public static DataSet merge(DataSet left, DataSet right) {

DataSet output = new DataSet();

while (!left.isPastEnd() || !right.isPastEnd()) {

if (left.getKey() == right.getKey()) {

output.add(left.getKey());

left.advance();

right.advance();

} else if (left.getKey() < right.getKey())

left.advance();

else

right.advance();

}

return output;

}

}
Further exercises:

1. Extend the code & tests so that the data sets could be provided in an initially unsorted order.

2. Generalise the solution to 2-dimensional data sets. Here is the essential requirement: given two data sets containing the following data

-22, “a”, “bb”

“c”, -33, “ddd”

0, “e”, “ff”

“g”, 0, “hhh”

37, “i", “jj”

“k”, 12, “lll”

111, “m”, “nn”

“o”, 37, “ppp”

produce a data set consisting of

0, “e”, “ff”, “g”, “hhh”

37, “i", “jj”, “o”, “ppp”

(It is recommended that you do not edit your existing solution directly: better to copy

both source and test code to a new package, and work on them.)

3. Change the merge join to have outer join semantics. In this case, the essential requirement for joining the two sets mentioned above,

-22, 0, 37, 111

-33, 0, 12, 37

is that it should produce the data set containing -33, -22, 0, 12, 37, 111. (This is an advanced exercise, and if you attempt it you should copy your existing solution and tests to a new package before commencing.)

Exercise 1: JUnit

b. Phone Numbers

Objectives

The principal objective of this exercise is to get you to understand why writing tests after the code is written is bad idea, and not having a testing framework is also a bad idea. We also want you to think about what is a suitable range of tests for some code. You need to think of a good range of both positive and negative test cases, to ensure that the functionality you write both accepts the positive cases and rejects the negatives. Are there any “corner cases” or “edge cases” that need to be covered? You will not be using any special tools like JUnit but simply the tool of many developers – the main() method.
Problem statement. You will be given a piece of code (PhoneUtils) that validates phone numbers according to the following rules. You will be receiving telephone numbers input by ordinary users, as e.g. entered through a web form. A valid phone number, of the format in question here, must start with a '9', and be followed by exactly 10 digits. Assume that users may use spaces, hyphens, parentheses or commas in typing the number in. These are irrelevant characters which are to be discarded. Thus given e.g. "9 (608) 555-1212" as input, the function is to return "96085551212". For a number which does not meet the conditions of validity, an exception should be thrown.
Steps

1. Create a Java class with a main method

2. Add the PhoneUtilsMVN-1.0.jar to your project

3. Within this main method inject a series of test values into the PhoneUtils object to see if it works.

Exercise 1: JUnit

c. Phone Numbers

Objectives

The principal objective of this exercise is to get you to think about what is a suitable range of tests for some code. You need to think of a good range of both positive and negative test cases, to ensure that the functionality you write both accepts the positive cases and rejects the negatives. Are there any “corner cases” or “edge cases” that need to be covered?

Problem statement. You will be receiving telephone numbers input by ordinary users, as e.g. entered through a web form. A valid phone number, of the format in question here, must start with a '9', and be followed by exactly 10 digits. Assume that users may use spaces, hyphens, parentheses or commas in typing the number in. These are irrelevant characters which are to be discarded. Thus given e.g. "9 (608) 555-1212" as input, the function is to return "96085551212". For a number which does not meet the conditions of validity, an exception should be thrown.

Steps

1. In an IDE, create an ordinary Java project. For this exercise, technically you could use either JUnit 3 or 4, but since we are starting a new project, not inheriting legacy testing code, you should use JUnit 4. Go to the project’s properties, and within that, Java Build Path, and select the Libraries tab. Click the Add Library … button, highlight JUnit, and click Next >. Select JUnit 4 from the JUnit Library Version drop-down. Click Finish.

2. Create a suitable package for your application class, e.g. junitintro. Within that, create a suitable class, e.g. PhoneUtils. Give it the stub of a method validatePhoneNumber(), which just returns null.

3. From this, create a JUnit test class, as described in the slides, which tests your method. Run the test, and observe the red bar in the JUnit view.

4. You need to devise a series of test methods that will provide a representative set of cases, both good and bad, which your validation method needs to handle. The best approach to this is: start with the simplest test you could specify, see the test fail, then implement enough to get it to pass. Then continue on to the next test. It is up to you to decide what a suitable range of test cases will be.
5. Since this is an exercise in writing unit tests, not in the Regular Expression API, there follow some hints on regexs in Java. But note: if you are not familiar with this API, or are a bit rusty on it, try to learn it by writing some JUnit tests. That is, create a separate test class where the test methods test your understanding, your predictions, of how the regular expression API behaves.

Use a String to define your regular expression. Remember that a regex meta-character like \s in Perl, held as a String in Java, needs to be escaped – as in “\\s”. There is some basic regex functionality in the String class. For a richer API, see the java.util.regex package. Two classes in particular are useful here. If your regular expression is in the String variable regex, you can compile this to a Pattern:

Pattern p = Pattern.compile(regex);

You will also have a String, say input, holding the phone number entered by the user. You create a Matcher from this Pattern, relative to that input text:

Matcher m = p.matcher(input);

With this Matcher object, you can do what the s/ / /g (global substitution) operation does in Perl: replace all characters which match the regular expression (as defined in regex above) with another. So

String out = m.replaceAll(“”);

will replace them all with the empty string – i.e. delete them.

Exercise 1: JUnit

d. Date Arithmetic

Objectives

The principal objective of this exercise is to get you to think about what is a suitable range of tests for some code. You need to think of a good range of both positive and negative test cases, to ensure that the functionality you write both accepts the positive cases and rejects the negatives. Are there any “corner cases” or “edge cases” that need to be covered?

Problem statement. Suppose there is a Date class which is just a wrapper around three ints, for day, month and year. You are tasked with writing a class for providing date calculations. Firstly, you must provide a method dateByDays(), which takes a Date and an int, and returns a new Date which represents the date from the input date by that number of days. In this first iteration, ignore the complexities of leap years (and even, if necessary, the differences in the number of days in a month).

Steps

1. In Eclipse, create an ordinary Java project. For this exercise, technically you could use either JUnit 3 or 4, but since we are starting a new project, not inheriting legacy testing code, you should use JUnit 4. Go to the project’s properties, and within that, Java Build Path, and select the Libraries tab. Click the Add Library … button, highlight JUnit, and click Next >. Select JUnit 4 from the JUnit Library Version drop-down. Click Finish.

2. Create a suitable package for your application class, e.g. junitintro. Within that, create two classes, e.g. Date and DateUtils.

3. A Date will just be a wrapper around three ints, for day, month and year. But it should not be possible to create a Date whose day value is outside the range 1 .. 31, nor whose month is outside 1 .. 12. Specify this by creating a JUnit class DateTest which tests that the constructor will throw an exception if an attempt is made to construct an invalid Date.

4. For DateUtils, give it the stub of a method dateByDays(), which just returns null.

5. You need to devise a series of test methods, to test this as-yet-unimplemented method. Each test method should invoke it with different int delta days. A good strategy is to start with the simplest case you could write a test for. This will make it easy to implement a solution for that case. Then create a test for the next step up in complexity. And so on. It is up to you to decide what a suitable range of test cases will be.

6. Ideally you should provide toString(), equals() and hashCode() methods for Date. Ensure that they have suitable tests.

Exercise 1: JUnit

e. Miscellaneous

Overview

Some extra labs which explore some issues in unit testing methodology.

A. Provide a class Evens with a method which, every time you call it, returns the next number in this sequence: 0, 2, 4, 6, ...

Define your own custom matcher that allows you to assertThat any of those numbers isAnEvenNumber(). Use it in testing your Evens class. Show that it combines correctly with the not() matcher.

B. Prelude to TDD

Write a JUnit test for a method which will calculate the sum of an array of ints. Write it in a Test class which doesn’t compile (because the method doesn’t exist yet). Do the minimum to make it compile (i.e. write a new class with the stub of this method.) Run the test and see it fail. Now implement your solution, and make the test pass.

Repeat for a method which calculates the average.

C. Paper and pencil exercise

You are tasked with implementing this method:

public void copyTo(String oldFile, String newFile)

throws CopyException

where oldFile is the path to an existing text file, and newFile is the path to where a copy of it is to be created. If a file already exists at that location, it is simply to be overwritten. Any problems accessing the existing file should result in a CopyException being thrown; ditto for any problems with the new file.

Devise a test plan for all the tests you would write for this method, noting any issues you think they would raise.

Exercise 2: Mock Objects

a. Database

Objectives

The objective of this lab is to continue on from the previous exercise, in writing JUnit tests which drive the development of an implementation that passes them. Here we will be developing a class which interacts with a relational database. The example below is based on MySQL, but it can be adapted relatively easily to any major RDBMS (provided the JDBC driver for it is available). You can use whichever mocking framework you prefer (solutions will be provided for EasyMock, and Mockito).

Let’s suppose that we already have some of this class already written:

package qa.tdd.mockobjects;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.SQLException;

import java.sql.Statement;

import javax.sql.DataSource;

import com.mysql.jdbc.jdbc2.optional.MysqlDataSource;

public class MySQLConnect {

Connection getConnection(DataSource ds, String url)

throws SQLException {

MysqlDataSource mds = (MysqlDataSource)ds;

mds.setURL(url);

mds.setUser("root");

mds.setPassword("root");

Connection con = mds.getConnection();

return con;

 }

ResultSet createResults(Connection con, String sql)

throws SQLException {

Statement stmt = con.createStatement();

ResultSet results = stmt.executeQuery(sql);

return results;

}

One of the benefits of TDD with mocks is that it naturally encourages a style of breaking an app down into lots of small, testable methods. Here we are not going to test the method getConnection() – to do that would be to write an integration test, since it would involve actually attempting to make the connection. Instead we are going (in the second part of the exercise) to mock the instance of Connection which it creates for us.

1.
Let’s start with a relatively straightforward bit of mocking. We have been tasked to develop a generic method

 String displayResultsAsString(ResultSet results, int numCols)

 (which throws SQLException) to iterate through the records of a ResultSet and return them in a string of a certain format.

How this app would typically work would be that first the method getConnection() gets called with a specific connection string, such as

"jdbc:mysql://192.168.117.131/mysql"

The connection object this returns (if the connect to the database succeeds) is then passed to createResults() shown above, with a SQL string such as

SELECT Uid, Lastname FROM Users

The ResultSet that this query produces will be passed to the method we are going to write, displayResultsAsString(), with a number of columns to display set e.g. to 2. A typical implementation of the method would be to call the ResultSet’s next() method inside a while loop, getting the data back from the first two columns as strings and appending them to a StringBuilder.

Write a testDisplayResultsAsString() method which mocks a ResultSet containing two records. At the end of the test method we will want to test the output that displayResultsAsString() returns, for equality with a string such as

fred001 : Foggs : \nbill100 : Boggs : \n

I.e. this shows the format of the string which the method is required to produce: each record in the ResultSet is expressed on its own line, and each item of data within a record concatenated with the next with a “ : “. Much of the work in the test method will be involved with setting up the expectations on the mock ResultSet necessary for our method to convert it to such a string. Notice that since the methods in the MySQLConnect class are instance methods, you will need a (real) instance of that class – the Class Under Test, after all - to invoke displayResultsAsString() on.

2.
The next method we have been asked to write is

public boolean validateUser(Connection conn, String user)

This method is going to validate a given user id by looking it up in the relevant table (a more realistic example might take an additional parameter, String password). The method will contain the relevant SQL needed for this validation:

SELECT 1 FROM Users WHERE Uid=?

The method is going to need to create a PreparedStatement from the Connection passed to it, and use its setString() method to set the parameter (placeholder) to the user string passed in. It will then execute the command and obtain a ResultSet, which it can interrogate to discover the boolean status of the SQL query.

In the testValidateUser() method you write, you will need to create several mock instances of interfaces. Part of the work in the expectation setting phase will be taken up with declaring how one of these mock objects comes as the return value from a method call on another (because e.g. Statement is an interface, you don’t construct it directly – you get the Statement from the Connection.) Unless you are steeped in this API, you will probably find it most natural to write a line in the validateUser() method, then write the line or lines in the test method to set up the mock for it, and its expectations.

 Exercise 2: Mock Objects

b. Servlets

Objectives

The objective of this lab is to continue on from the previous exercise, in writing JUnit tests prior to writing an implementation that passes them. Here we will be using the EasyMock framework to assist in creating container-generated objects as necessary.

Problem statement. A session is, typically, where a user has authenticated to a web site, such as a banking or shopping web application, and is enabled to perform a sequence of actions (requests), before either logging out or being timed out. In the servlet API, an HttpSession is a server-side object that allows Java resources in a web application to maintain state for clients. Objects (often Strings) can be attached to, and retrieved from, a particular HttpSession object – so the objects associated with one client’s session are completely distinct from those of another client. For example, once a user has successfully logged in to a web application, a String “authenticated” can be attached to their session, with a String value e.g. “true”. The client has no direct access to this, since it remains on the server side, but from any specific request they make from their browser, the server can detect if a session is associated with that request, and act upon that information.

The task is to write a servlet that will use this technique to check if the current request comes from a user who is authenticated, and route them to a page “welcome.jsp” if they are, “logon.jsp” if they are not.

Steps

1. In Eclipse, start by creating an ordinary Java project. (Those familiar.with this domain would be thinking: create a Dynamic Web Project. But we are doing mock object unit testing here, not integration testing.) Go to the project’s properties, Java Build Path, Libraries tab. Depending on your Eclipse version: click Add Library …, select Server Runtime, click Next > and choose Apache Tomcat. Alternatively, if you have an external installation of tomcat, click Add External JARs, and navigate to the servlet-api.jar in tomcat’s lib directory.

2. Depending on your Eclipse version, you should now be able to use the New command to select Other, then Web, then Servlet. If not, you can simply create a new Java class, in the name Field call it WelcomeServlet, and against the Superclass: field click the Browse button and use it to select HttpServlet from javax.servlet.http. Once you have created the servlet class, use the Source menu to select Override/Implement Methods …, and check doPost().

3. As in the previous exercise, from this stub of a class, use it to generate a JUnit 4 Test, WelcomeServletTest. Again, in the Java Build Path of your project, you will need to Add External JARs: easymock.jar, and in order to mock classes: easymockclassextensions.jar, and the library it depends on, cgilib-nodep.jar (We omit version numbers which may be included in the jar file name, as these change with time.)

4. You should easily be able to create two test methods – one for the case where the user is not authenticated – looking for an attribute “authenticated” on the session returns null – and one where the user is authenticated. In the former case we need to check that their request is forwarded to the resource “login.jsp”, and in the latter, to “welcome.jsp”. You will need to create several mock objects for these tests.

5. Once you are satisfied that your tests are properly formulated – running them of course gives you the JUnit red bar – proceed to an implementation of the servlet’s doPost() method, and turn that bar green.

Exercise 3: TDD Intro

a. Seconds To Words

Objectives

The objective of this lab is to develop code which will convert a given integer number of seconds into a string representation in English words. So for instance 3723 is to be converted into “1 hour, 2 minutes, 3 seconds”.

What is critical now is that the code should be developed in a test-first way. That is, you will work in small steps, at each step specifying what you are going to develop in the form of a unit test. You will gradually build up a suite of tests, and you will be re-running these tests very frequently.

Step 1

Create a new Eclipse Java project Seconds2WordsApp. Create a package util, with a class in it Seconds2Words. Create a second class in the same package, Seconds2WordsTest.

You need to create a “getting things set up test”; the obvious candidate in this case is for 0 seconds. So define a @Test method convertZeroSeconds(), and make an assert about what you expect – that is, when your convert method is passed the integer 0, what string should it return? At this point, of course, your test class will not compile, since it will be making an assertion about a method in your application class which does not yet exist.

Do the minimum to get your test to compile: put into your application class a convert() method that returns the empty string. At this point it is critical that you now run the test, to verify that you get the “failing test” outcome.

Do the minimum to get your test to pass. Remember at all times not to let your application development run away from what is specified by the tests; don’t attempt to develop the next bit of functionality before you have specified the requirement in the form of a test.

Step 2

Deal with simple seconds (below one minute), handling the English pluralisation corner case (“1 second”).

Step 3

Deal with simple minutes (below one hour). Suggested sequence of tests: 122 seconds. 61 seconds. Ensure that your test method names are as informative as possible (e.g. convertPluralMinsSingularSecs()rather than convert62Is1minutes2seconds() which just repeats the data inside the test.)

Step 4

Deal with whole minutes (below one hour). Suggested sequence of tests: 180 seconds. 60 seconds.

Remember DRY. You should find you have used the same logic to determine the pluralisation suffix both for “minute(s)” and “second(s)”. So now we can see a simple illustration of the way in which having a suite of unit tests gives us confidence to undertake a refactoring of our code. Assuming you have green bar/all tests passing, highlight one section where the code has been duplicated, and use the Refactor menu’s Extract Method… command to pull this out into a separate method. Replace the other section of duplicated code by a call to this method, and ensure that in the method definition, the method parameter is named in a way which is neutral between minutes and seconds. Crucially, re-run your tests to verify that they still all pass.

Step 5

Handle basic hours (less than a day). So for instance 11045 should be translated into “3 hours, 4 minutes, 5 seconds”.

Step 6

Handle the remaining cases for hours: singular hour, minute and second; whole number of hours; multiple hours plus whole number of minutes; multiple hours, seconds but no minutes, etc.

Step 7

Convert digits to words. A common style convention is to express all single digits by their English equivalents, and all numbers greater than nine by numerals. So convert e.g. 14467 into “four hours, one minute, seven seconds”, and 21612 into “six hours, 12 seconds”.

Step 8

Handle days and weeks.

Exercise 3: TDD Intro

b. Supermarket Pricing

Objectives

The problem definition comes from http://codekata.pragprog.com/2007/01/kata_nine_back_.html

“Back to the supermarket. This week, we'll implement the code for a checkout system that handles pricing schemes such as ‘apples cost 50 cents, three apples cost $1.30.’ …"

“This week, let's implement the code for a supermarket checkout that calculates the total price of a number of items. In a normal supermarket, things are identified using Stock Keeping Units, or SKUs. In our store, we'll use individual letters of the alphabet (A, B, C, and so on). Our goods are priced individually. In addition, some items are multipriced: buy n of them, and they'll cost you y cents. For example, item 'A' might cost 50 cents individually, but this week we have a special offer: buy three 'A's and they'll cost you $1.30. In fact this week's prices are:”

 Item Unit Special

 Price Price

 A 50 3 for 130

 B 30 2 for 45

 C 20

 D 15

As the kata goes on to state, there are many ways one could implement this. We’re going to walk through the outlines of one implementation. What’s central here is the TDD methodology: we specify a small bit of the solution in a test, the test fails. Then we implement it, the test passes. Then we specify the next bit of complexity in a test, the test fails. Then we implement it, and so on…

Step 0

Create a new Eclipse Java project Supermarket, with both src and test source folders. Ensure that each has the same package, step0.

Let’s think about what we’re going to need to specify before we jump in and start coding. We’re going to need a Checkout class which is initialised by some kind of set of pricing rules. Central to the problem specification is decoupling the checkout logic from the particular set of pricing rules it is fed on a given week. Checkout will have two key methods:

public void scan(char sku);

public int total();

We keep calling scan() on different items, we ask for the total that basket of items comes to. What’s the simplest test we could formulate? Always start by thinking in these terms, for it will help you get everything set up. Obviously: don’t scan anything, and get a total of 0.

In your test folder version of step0, create a CheckoutTest class, create a Checkout which in setUp() is initialised with null passed to its constructor (we’ll leave for later what this set of pricing rules is going to look like). Define a test which specifies the case just discussed (how about emptyBasket_totalsZero()?)

Make it compile, and make it pass. Do the minimum needed! Ask yourself this question: have you specified some behaviour in a test, and does your application code do what the test specifies?

Step 1

The next step up in complexity is clearly to scan a single item, then verify that the total of the basket is whatever that item costs.

How to specify a PricingRule? One way might be to have a single constructor, and multiple instances for a given product:

PricingRule('A', 1, 50)

PricingRule('A', 3, 130)

Another way might be to have an overloaded constructor, as in

PricingRule('A', 50, 3, 130)

PricingRule('C', 20)

You decide.

Copy step0 in the src folder and paste it back in as step1; repeat for step0 in the test source folder. Create some kind of collection of these pricing rules in your test, pass it to the Checkout constructor, add your new, second test method (maybe,

basketWithSingleItem_HasPriceOfThatItem() ?)

Make it compile. Verify it fails. Make it pass.

Step 2

Remember at all times not to let your application development run away from what is specified by the tests; don’t attempt to develop the next bit of functionality before you have specified the requirement in the form of a test.

What’s the next bit of complexity we could specify? Multiple instances of the same item below the discount. Multiple instances of different items below the discount. Try to make your test names as revealing as possible. Not basketWithABC_totals100(), but more like basketWithMultiDifferentItems_BelowDiscount(). The point here is that the test body, in this scenario, would scan(‘A’), scan(‘B’), scan(‘C’), and so make that aspect of it clear – whereas what we want to bring out, in the test name, is that there is no discounting in this test case, regardless of the particular test data used.

Step 3

Next step up in complexity? How about 3 As? Then 4 As. And 6 As.

Step 4

Verify that your application can handle a basket with an arbitrary set of items, in any order – e.g. that scanning 'D', 'A', 'B', 'A', 'B', 'A' will give a total of 190.

Step 5

What about scanning a ‘Z’ (a char not in the pricing rules)? Handle this in terms of an UnexpectedItemInBaggingAreaException.

Exercise 3: TDD Intro
c. TDD with Mocks
Objectives

You are tasked with developing, test first, an application that will provide a simple command line demonstration of some existing functionality. The scope of the demonstration is made clear by what the main menu is to display:

1) Main menu (this)

2) Registration

3) Login

4) Exit
The user will enter one of these numbers at the keyboard, and the demo will respond appropriately. The demo should also handle bad user input gracefully.
Step 1

Start by specifying the output of the main menu in a class DemoTest. In your test method, simply create an instance of the Demo class you are about to write, using a no args constructor, and call a method mainMenu() on it. In this first step, it is enough that you assertThat its output startsWith “1) Main menu (this)\n” and endsWith “4) Exit\n”.

Make it compile: generate a Demo class, with a mainMenu() method. Verify that the test fails. Make it pass.

If you wish, create a separate class with a main() method, that will be the demo runner. In this first iteration, it will create an instance of the Demo class, and simply print the output of mainMenu() to System.out.

Step 2

We are now going to give Demo the first cut of its principal run() method. The big change from the point of view of the demo runner is that it will now call demo.run(), and that will be responsible for printing the contents of mainMenu() to the console. But we don’t want Demo to hard-code this dependency on where the output is going. So we will use constructor injection to inject a PrintStream into the Demo. The demo runner will be revised (at the end of this step) to use this one-arg constructor to inject System.out.

We start by specifying this in a test. The test will mock System.out, so that we can ask this mock if it got the menu string we expect when, in the test, we invoke demo.run(). Create a PrintStream instance mockOut, and in setUp() use your preferred mocking framework to instantiate it. If you are using easymock, make it a nice mock. Pass mockOut to the Demo constructor.

You can keep the original, direct test of mainMenu(). But create a new test which sets the expectations on mockOut – that it will get a println() call with the contents of mainMenu().

Word of warning. If you use the Hamcrest matcher endsWith() in your first test, and you are using easymock with its own matcher endsWith() to set the expectations on the mock, and you have used static imports for both, there will be an ambiguity. To avoid this ambiguity, you need to have at most one of them statically imported, so

import static org.easymock.EasyMock.endsWith;

import org.hamcrest.Matchers;

With these imports, you would use the easymock endsWith as is:

mockOut.println(endsWith("Exit\n"));

But the hamcrest one would need to be invoked statically through the class name,

assertThat(demo.mainMenu(), Matchers.endsWith("4: Exit\n"));

So your new test will set the expectations on mockOut, and call demo.run(), with whatever else is required by the mocking framework (e.g. with easymock, the replay and verify calls).

Now make this compile. Adjust the constructor for Demo as already described. Provide the void run() method. Run the test and verify that it fails. If you’re using easymock you should get something like “Expectation failure on verify … expected: 1, actual: 0”. Make the test pass; i.e. have run() print the contents of mainMenu() to its PrintStream.

Finally, since we do ultimately want to be able to run the demo, adjust the class with the main() method in the way described in the first paragraph of this step.

Step 3

What’s the simplest interaction from the user we could specify? That they exit the demo immediately. In this step we’re going to mock System.in, so that we can fake the behaviour of a user entering the code for Exit, 4. So we’re going to add a second argument to the Demo constructor, to allow a BufferedReader to be passed in.

In the test class, declare a BufferedReader mockReader, create it in the @Before method, and pass it to the Demo constructor. Create a new test method, perhaps userExitsDemoImmediately(). What do we expect in this scenario? That the main menu is first printed to the console, and then the user enters “4”. What would be nice is that when the user finally exits, the system displays a goodbye message, like “Thank you for using the system”. Create all these expectations.

To make this compile, all we need to do is add a BufferedReader field to the Demo class, and adjust the constructor appropriately. Having done this, run the test and verify it fails.

Your test should have two unsatisfied expectations, i.e. each of which is sufficient for the test to fail: that there will be a call to readLine(), and that a “Thank you” message will be printed out. Do the minimum to get the test to pass. Have Demo’s run() rethrow the IOException that the call to readLine() necessitates; the signatures of any @Tests which test run() will similarly need to be adjusted to acknowledge this checked exception.

Finally adjust the demo runner. It will need a reader, e.g.

BufferedReader reader =
new BufferedReader(new InputStreamReader(System.in));

which is passed to the Demo constructor. Its call to demo.run() should be wrapped in a try/catch block. Run it: observe the main menu, type anything at the console, and observe the “Thank you” message.

Step 4

From this point on, no further adjustments are needed to the demo runner. In its main() method, it creates a BufferedReader around System.in, creates a Demo instance with System.out and the reader passed in, and invokes demo.run(), wrapped in a try/catch block. So no further discussion of the runner is needed. But run it at the end of each step to observe the functionality you have been building up.

It will be useful to have a utility method in Demo, which robustly handles user input from the keyboard. If they enter “2”, it will return the int 2. But if they enter “two”, or just the empty string, it should return an int outside the menu range, e.g. -1. Specify this in two tests. In the first, the mockReader will expect a call to readLine(), and it will return “2”. The method we are specifying – call it e.g. readAnInt() – will in this scenario return 2. In other words, not only can the test verify the mock, it can also make an assert that the return value of readAnInt() is 2. The second test specifies the scenario where the user enters the empty string – so that test might be called readAnInt_InvalidEntry_ReturnsMinus1().

In step 3 we had got as far as specifying that the main run() method will read a line from the reader, but we had not yet put any logic in place to actually process the user’s response. Assuming readAnInt() has been implemented (the two tests just described have gone from red to green), we are now in a position to address that. A simple scenario that would test this would be: the user is presented with the main menu initially, they enter a “1”, and so they see the main menu again. Make a test out of this: userRequestsMainMenu(). In Demo, in the run() method, put in place the beginnings of a switch block, which switches on the value returned by readAnInt(), with just one case statement, to handle case 1.

When everything is working satisfactorily, review your application and test code to ensure there is no duplication. You may find that the lines you are using to specify that mockOut expects the main menu are repeating in more than one test scenario. If so, extract them out to a utility method, e.g. expectMainMenu().

Step 5

A command line demo ultimately needs some kind of loop, to keep reading the user’s input for as long as they want, until they enter the code to quit. What would be a simple way to specify this looping behaviour in a test? One way would be mock the scenario of the user requesting the main menu twice. Most mocking frameworks make this straightforward to write, because they allow us to qualify the cardinality of an expectation. For instance easymock,

expect(mockReader.readLine()).andReturn("1").times(2);

mockOut.println(startsWith("1: Main menu (this)\n"));

expectLastCall().times(2);

Write this up in a test, e.g. userRequestsMainMenuTwice(), and verify that it fails.

In Demo’s run(), wrap the call to readAnInt() and the subsequent switch block in a while(true) loop, and give it a meaningful label (like readingInput). You will need to add second case statement, for case 4. This should break – not simply out of the switch block, but out of the containing while loop, which is why the label for the while loop is needed.

The while loop is a major change to the logic of the run() method, and it is likely to make some tests block, since they enter the loop and do not provide the exit condition. In the test scenario where you specified that the user entered “4” and got the goodbye message (this was in step 3), extract the lines which specify those two expectations into a utility method expectUserExits(), and use it in the appropriate tests.

Step 6

We have ensured that the low-level input-reading function gracefully handles bad input (step 4), but we also need to ensure that this is done at the higher level of the while loop: that it will gracefully handle a number outside the menu’s range of 1 to 4. Create a new test, e.g. badUserInputIsHandled(), and specify the scenario. Expect that a user-friendly message will be printed to the output, perhaps “Sorry, unrecognised input. Please try again”. Follow this with a call to the recently added expectUserExits() method. These expectations will require of the Demo application that after any bad input it does not crash out of the while loop, or hang, and still requires as a minimum the user to enter “4” to quit.

The implementation of this is straightforward: handle it in a default clause in the switch block.

Step 7

Now the core framework of our demo has been well specified in a series of tests, it is relatively straightforward to continue on with the main development. Next up we can consider menu item 2, user registration.
Let’s suppose that as a minimum, user registration involves inviting the user to choose a username and password (to be used in menu item 3, login). So mockOut will expect the user to be prompted to enter their username, and mockReader will mimic the user entering some value; similarly for password. These four expectations can be wrapped up into a utility method, e.g. expectUserRegistration(), in DemoTest. Similarly, you may find it useful to wrap the corresponding implementation into a method in the application class, say registerUser(). The return type of this would most naturally be a class User, which just wraps two Strings, username and password.

As with readAnInt() (step 4), we can have two tests. One which tests the method directly – here, registerUser(), and makes asserts against the User which it returns. And one which tests it indirectly, by setting up a scenario which tests demo.run(), which will ensure that the branch of the switch block for case 2 is properly covered.

Step 8

Continue on with menu item 3, login. Specify two scenarios: one in which the user who registers subsequently presents the correct username and password, and one where the password is incorrect.

Exercise 3: TDD Intro

d. Money

Objectives

The objective of this exercise is to work through a development task in the TDD style, a sequence of short steps.

Problem statement. An application for managing portfolios of equities, priced only in US Dollars, has been successfully developed. A request has come in, to extend it to handle securities priced in other currencies. So, to take a simple scenario, we want to be able to handle a situation like this:

	Share
	Quantity
	Price
	Value

	IBM
	1000
	25 USD
	25000 USD

	BP
	2000
	5.50 GBP
	11000 GBP

	
	
	
	47000 USD

Somewhere, exchange rates will have to be represented, as here assumed £1 = $2. We can see from this table that we need to represent at least two calculations:

i) In the rows: multiply a price in a given currency by an amount

$5 * 2 = $10

ii) In the last column: add amounts in two different currencies (given an exchange rate)

$5 + £5 = $15
(if £1 = $2).

Maintain a paper-and-pencil To Do list, starting with these two calculations as mnemonics for what needs to be achieved. As we go along, inevitably new tasks will occur to us, and need to be added; conversely, as issues get resolved/implemented, we can cross them off.

If you want to keep a record of the progress of your TDD, you can create a series of packages, qa.tdd.money.iteration0, qa.tdd.money.iteration1, etc. In Eclipse’s Package Explorer view, highlight the package, <CTRL>-C, highlight its source directory, <CTRL>-V and rename it.

The exercise is a relatively “hand-holding” one, in which the development steps are suggested in detail. It is adapted from material in the first part of Kent Beck’s Test Driven Development By Example.
Iteration 0

Starting with task (i), write a JUnit 4 test for the multiplication task.

a) Assume there is going to be a class Dollar, with a constructor that takes an int, and create an object to represent $5.

b) Assume that this class has an instance method which allows you to times it by an int amount like 2

c) Finish the test with an assertEquals() statement, with an exception message like “$5 * 2 failed”, 10 as the expected value, and some way of finding the actual value now in your dollar object. For the latter, the quickest solution for now: a public field amount.

Various issues may strike you about this test: using integer values for monetary amounts; the side effect that multiplying a five-dollar object has changed it into a ten-dollar object; the public data. But the point is we are getting a quick initial test up and running. Already it is prompting us to think of further things that will need to be done. As Beck says, “We’ll make a note of the stinkiness and move on”. In other words, add any issues you foresee with this to the paper To Do list, and get on with the task in hand, of getting JUnit to go red, then green.

Take the obvious steps necessary to get the test to compile:

a) Create the class being tested

b) Give it (the stub of) the relevant constructor

c) Give it (the stub of) the relevant multiplication method

d) Give it the field.

The test now compiles. We know it’s going to fail, but - very important – run it. Koskela makes the point that he always runs the test at this point, because red confirms he is running the right test (Test Driven, p. 53). Inevitably it happens sometimes that you run an old test, which would be very misleading. So always check for red first.

Iteration 1

Make the smallest step necessary to get the test to pass. This will be the hardest part for most developers. If you’re not sure what this should be, check the TDD Worked Example on the slides. When you come to generalise your solution in a moment, leave that initial implementation in the source file – but commented out – so that your instructor can see that you did take that small step. Run the test, and confirm we now have green.

Now we have a passing test, we move to the other principal injunction of the TDD methodology: remove duplication. Again, try to move in very small steps, smaller than you would normally take. The point is to get a feel for the possibility of moving in tiny steps when you need to. The idea is that there is some flexibility in the TDD process: when you are confident, you can take bigger steps; when you hit difficulties you can move back to smaller steps.

At the end of Iteration 1 you should have an implementation that you are satisfied correctly passes the test. Add another multiplication test, with different values, to confirm that your solution generalises. Cross the multiplication task off the list.

Iteration 2

Address the issue that multiplying the $5 object had the side-effect of changing it. This is wrong; Dollar is a Value Object; once a Dollar’s state has been set when it was constructed, that should not be capable of being subsequently changed. Re-write the test so that your multiplication method returns a new Dollar object. Clearly, we are making a refinement to the interface of Dollar.

Change the application code so the test compiles. Run and fail. Then refactor to make the test pass.

Iteration 3

Value objects need a notion of equality – one $5 bill is equals-to another. This fact suggests the test we need to write for Dollar.equals(). Add a new test to your test class, for Dollar.equals(). Add another test for non-equality (hint: the assertion message might be “$5 should not equal $6”.) Java 101: are these tests going to compile? run? pass or fail?

Now back to application code: override equals() in the Dollar class. (There’s nothing tricky about this; the essential information you need is contained in the preceding paragraph. To be correct, you can add a check that if the other object is not instanceof Dollar, return false.) Re-run the test class until all tests pass satisfactorily.

(The rules of Java say that if you override equals() for a class, you must also override hashCode(). Put the latter onto the To Do list.)

Iteration 4

Now that we have a workable value object Dollar, we can recast the original test asserts in a more properly OO format. Instead of an expected int 10 compared to the amount that comes from doubling 5 Dollar, we can rather have an expected new Dollar(10) compared against the result of that multiplication - and do away with accessing what should be hidden data, amount. Re-write the test, and run it. After verifying it passes, now change amount’s accessibility to private. Run the test again.

The whole purpose of this development exercise is to handle multiple currencies, and now we are in a position to start. The first step is of course not to copy the Dollar class for a new currency, but to copy the dollar multiplication test for a new currency – call it testFrancMultiplication() or some such. Now take the smallest step necessary to get this to compile – copy and paste the Dollar class (in Eclipse: in the package explorer view, not the file navigator view) to a class for your new currency.

Make sure you always have tests for all the code. So introduce tests for the other method in your new class, i.e. for equality/non-equality of Francs. Re-run.

Iteration 5

Remove duplication! At each of the following steps, re-run the tests. Suggested sequence:

a) Introduce Money class

b) Make the classes for specific currencies subclass it

c) Move amount to the superclass, with appropriate visibility

d) Define an equals() method for the superclass, generalising it as appropriate

e) Delete equals() from the subclasses

Iteration 6

We’ve introduced Dollar and Franc, but there is one set of equals/non-equals tests which we have glaringly failed to include. Rectify this now.

These tests fail. We expect 5 Dollars not to be equals to 5 Francs, and vice versa, but there is nothing in the generic equals() method to rule this out. A quick fix is to add an extra condition using the getClass() method on the two objects being compared. This, as Beck says, “is a bit smelly” – we are using meta-data from the world of Java classes rather than domain knowledge from the world of finance. Make a note of this on the To Do list.

Iteration 7

There is still a lot of duplication. The two currency classes are essentially isomorphic; there doesn’t seem enough of a need in this application to warrant retaining them. There are a number of ways the design could go from here. If we want to remove references to the Dollar and Franc classes, and do so in small TDD steps, a first small step would be to replace constructor calls to Dollar(5) etc. with factory methods in the superclass. Again, we start by specifying this with a test; replace the original creation of a $5 object (step 0a above) with a call to Money.dollar(5). Now introduce this static factory method into Money and run the tests.

The next step to removing Dollar from the test code: change the type of this $5 object from Dollar to Money. The next line of the test will now throw up a compilation error: invoking the multiplication method times(2) on this Money object, when there is no such method in the superclass. A quick fix to get this to compile is to introduce an abstract times() method into the superclass. The tests should still all pass.

This should give us confidence to remove all references to Dollar and Franc from the test class. This is an important achievement: the client code no longer has any knowledge of the subclasses. We have a suite of tests which potentially allow us to refactor away completely the Dollar and Franc classes. Complete this change in the test class and confirm green.

Keep up your maintenance of the To Do list.

Iteration 8

A design decision which may already have occurred to you, if we wish to have a single Money class but distinguish currencies, is to introduce a representation of currency – USD, GBP, CHF, etc. For simplicity, suppose this will be a String. So how can we test this? A quick and dirty initial idea, by analogy with amount, would be to assume that a Money object will have a field currency, which, depending on the factory method used to create it, will evaluate to “USD”, “CHF”, etc. Implement tests for this.

To get the tests to compile, introduce a String variable into the Money class. Run and fail.

The factory methods in the superclass still call the constructors in the subclasses. So it is a simple step to change the constructors to set a value for currency. Run and go green.

Iteration 9

We now have a full suite of tests, incorporating a notion of currency. So now let’s move towards refactoring away the subclasses. Keep re-running the tests at every opportunity.

a) Give Money a constructor which takes an amount and a currency

b) Change the factory methods dollar() and franc() to use this constructor

c) Remove abstract from the signature of times(), and define it

d) Remove abstract from the signature of Money (you had to do this when you gave the class an abstract method)

e) Ensure any remaining references to the subclasses are removed from Money

f) Adjust the definition of equals() to use currency rather than getClass()

g) Delete the subclasses

Iteration 10

One of the key requirements we are aiming to meet is to have the capacity to form the sum of two quantities of money, in different currencies. An obvious first step would be to first test adding two quantities of the same currency.

You know the routine by now: implement a new test method for this case, then make it compile and fail, then do the minimum to get it to pass. If you’re not confident of the implementation, use the Fake It strategy, and then generalise; if you are confident that the implementation is obvious, go straight to that – with of course the option to back out and step more slowly if that doesn’t work.

Discussion

What lessons do we learn from this exercise? What was good? What was bad?

Exercise 4: TDD Main

a. Amazonian

Overview

User stories have become an important part of Agile development, as a way of capturing requirements. But a user story is far less detailed than a traditional statement of a requirement; it is a short specification written in ordinary language about something which some user of the system to be developed wants to achieve. A good way of writing them is to follow the template:

As a <role>, I want to do <goal>, so that I can achieve <aim>

User stories are sometimes described as a “promise for a conversation” – the starting point for a discussion between developer and client. In these exercises, treat your instructor as the client: for anything you need clarifying, go to the client.
Your objective is to develop the core business tier functionality for a web site like amazon. Your team is not concerned with the front end – there is another team working on the user interface.

You are to develop a solution taking a wholly test-driven approach to it. You may want to read through all the user stories to get an idea of what it’s all about, but you should tackle it one user story at a time, keeping in mind YAGNI at all times. So for user story 1, for instance, you will probably decide you need a Product class. Put only as much detail into that as you need for that user story; to get started, a product perhaps needs only a name and a price. Later on you may find you may need to add further detail to that class – but do so only when it’s needed by a specific user story.

As always, keep in mind good coding practice for both your application and testing code. For instance, respect DRY:

a. If you find you are repeating the same test fixture set-up in multiple places, consider factoring this out to a common fixture repository

b. Depending on your implementation, by around story 3 you may find that two of your classes share some common functionality: consider refactoring out a common base class

Note: there are more user stories here than you are likely to have time to complete. If you get to story 5, you might like to explore the difference between specifying a test using a real .csv file versus mocking the interaction with the file system.

1. As a user

I want to ask for a list of products

So I can choose what I want to buy

2. As a user

I want to be able to choose a product

So I can put it in my shopping basket

3. As a user

I want to be able to remove a product from my basket

So that I can change my mind

4. As a user

I want to be able to order the contents of my basket

So that I can have them delivered *
5. As an administrator

I want to be able to define the products in a flat file

So that the catalogue can be loaded up from file

6. As a user

I want to be able to save my basket

So that I can come back at a later date and continue

7. As a user

I want to be able to register for the site

So that my address and credit card details will be saved

* Footnote to story 4. So that development can proceed in parallel between your team and the user interface team, your respective project managers have agreed a common interface. Your solution must be coded in terms of implementing the following two interfaces:

public interface Order

{

 String getCustomerId();

 List<LineItem> getLineItems();

 double getTotalCost();

 void place();

 // ONLY AFTER place() DOES THIS METHOD RETURN AN
 // ORDER NUMBER OTHER THAN 0:

 int getOrderNumber();

}
public interface LineItem

{

 Product getProduct();

 int getQuantity();

 double getCost();

}

Exercise 4: TDD Main

b. My Builder

Overview

User stories have become an important part of Agile development, as a way of capturing requirements. But a user story is far less detailed than a traditional statement of a requirement; it is a short specification written in ordinary language about something which some user of the system to be developed wants to achieve. A good way of writing them is to follow the template:

As a <role>, I want to do <goal>, so that I can achieve <aim>

User stories are sometimes described as a “promise for a conversation” – the starting point for a discussion between developer and client. In these exercises, treat your instructor as the client: for anything you need clarifying, go to the client.
Your objective in this exercise is to develop the core business tier functionality for a web site like mybuilder, jobsorted or findatrade. At this stage of the project development, you are not concerned with issues such as either the user interface, or how data will be stored.

You are to develop a solution taking a wholly test-driven approach to it. You may want to read through all the user stories to get an idea of what it’s all about, but you should tackle it one user story at a time, keeping in mind YAGNI at all times. So for user story 1, for instance, you will probably decide you need a Job class. Put only as much detail into that as you need for that user story; a job perhaps needs a title, a description, and its postcode location. Later on you may find you may need to add further detail to that class – but do so only when it’s needed by a specific user story.

[Note: there are more user stories here than you are likely to have time to complete.]

1. As a user

I want to list jobs that have been posted

So I can get an idea of what to write for my job

2. As a user

I want to list builders with a specific skill

So I can get a list of their names

3. As a user

I want to list builders with a specific skill

So I can compare their reviews

4. As a user

I want to be able to register for the site

So that I can post a job

5. As a registered user

I want to be able to post a job

So that builders can tender for it

6. As a builder

I want to be able to register for the site

So that I can tender for jobs in my area which match my skills

7. As a registered builder

I want to be able to tender for a job

So that I have a chance of getting it

8. As a registered user

I want to be able to list the builders who have tendered for my job

So I can rank them by average rating

9. As a registered user

I want to be able to send a message to a builder

So I can ask for clarification or invite them for a site visit

10. As a registered user

I want to be able to appoint a builder for my job

So they can come and do the work, for the price agreed

11. As a registered user

I want to be able to review a builder

So others can see how good/bad they are

12. As an administrator

I want to be able to load and save builders from/to persistent storage*

So that the data can be recovered in the event of a system crash

13. As an administrator

I want to be able to load and save jobs from/to persistent storage

So that the data can be recovered in the event of a system crash

14. As an administrator

I want to be able to review each job

So that I can accept it for the site or reject it

*Note: “persistent storage” could be: relational database; CSV file; XML file. Discuss with your instructor. Builders should of course be saved with their multiple skills.

Exercise 4: TDD Main

c. BlackJack

Objectives

The objective with this exercise is to work with a much more loosely-specified problem. By thinking first about how to write tests, you will sharpen up the requirements, make design decisions, as well as driving the development process.

If you’re not already familiar with it, take some time to acquaint yourself with Eclipse’s refactoring menu. Go to Eclipse’s Help menu -> Help Contents -> Java Development User Guide -> Reference -> Refactoring, and look at the list of Refactor Actions. Try out some of the refactorings on some old code of your own. Try to use some of these operations during your coding of the exercise.

Problem statement. Develop a text-based application that will simulate the card game Blackjack (Vingt-et-un , Twenty One). Model a game of two players: the dealer and one other player. Each player will be dealt two cards, and can then decide to stick or twist (as many times as desired). So the output for typical run of the program might look like this:

Player's hand was: [Two of Diamonds, Ten of Clubs, Ace of Hearts, Eight of Clubs]
Dealer's hand was: [Four of Hearts, Five of Clubs, Ace of Clubs]
Player scored 21 Dealer scored 20 - Winner was Player
Your program should be capable of modelling the fact that an ace can either be high or low (as in this example output.) If time permits: an additional requirement is that each play of the game is to be recorded in a simple database table, with columns for the dealer’s score and player’s score. Develop this test-first by mocking the database connection.

Periodically your instructor will call everyone together to discuss how they are doing, what they are doing, what problems they have faced, and overcome. The first discussion should revolve around your test plans: what test classes you envisage writing, in what sequence, and what tests they will contain.

TDD Workshop 2.0

