Telelogic

Real-Time UML

Bruce Powel Douglass, PhD
Chief Evangelist
Telelogic
www.ilogix.com
groups.yahoo.com/group/RT-UML

Helelogic

What is UML?

* Unified Modeling Language

* Comprehensive full life-cycle 3rd Generation modeling language
— Standardized in 1997 by the OMG
— Created by a consortium of 12 companies from various domains

— |-Logix a key contributor to the UML including the definition of behavioral
modeling

* Incorporates state of the art Software and Systems A&D concepts
* Matches the growing complexity of real-time systems

— Large scale systems, Networking, Web enabling, Data management
* Extensible and configurable
* Unprecedented inter-disciplinary market penetration

— Used for both software and systems engineering
* UML 2.0 is latest version (2.1 is in the pipeline)

Real-Time UML T Telelogic

UML supports Key Technologies for Development

Telelogic

UML 2 Diagrams

Structure
Diagrams

Class
Diagrams
Object

Diagrams
Deployment

Diagrams
Component

Diagrams

nication

Diagrams

‘(art
Diagrams
Info Flow
Diagrams
Use Case
Diagrams

Functional
Diagrams

Interaction
Diagrams

k

ing

Diagra

Sequence
Diagram

Real-Time UML T Telelogic

How does UML apply to Real-Time?

* Real-Time UML is standard UML

— “UML is adequate for real-time systems” Grady Booch 1997

— “Although there have been a number of calls to extend UML for the real-time domain ...
experience had proven this is not necessary.” Bran Selic, 1999 (Communications of the
ACM, Oct 1999)

* Real-time and embedded applications
— Special concerns about quality of service (QoS)
— Special concerns about low-level programming
— Special concerns about safety and reliability

* Real-Time UML is about applying the UML to meet the specialized
concerns of the real-time and embedded domains

Real-Time UML T Telelogic

UNIFIED°
MODELING L
LANGUAGE
How do we capture requirements
using UML?

Use Case Modeling

Real-Time UML T Telelogic

Association

Basic Use Case Syntax

Constraint

{ shall alarm within 2 /

seconds of detection }

\
\
\
\
\

X

Supervisor

/

Actor

\\\Building Management System

e

Use Case

Real-Time UML

A

Visitor

System Boundary

© Telelogic AB TEJEJ og Ic

A Use Case ...

* Is a named operational
capability of a system

—Why the user interacts with %
th e SyStem Interlocking 2N
* Returns a result visible to one or
more actors Signal Trains %

f): K%ints
Trackside
Equipment %

* Does not reveal or imply internal
structure of the system

Signal Trains
Manually

ﬂ Signals
Observes Signal Trains
Automatically
Signaller
Display Passenger
Information
Passenger

Real-Time UML T Telelogic

A Use Case Is Used to

* Capture requirements of a system

— Functional requirements Functional
* What the system does O requirements
— Quality of Service (QoS) N are modeled
* How well the system does it: as use cases
— Worst-case execution time sequence diagrams:
— Average execution time activity diagrams or
— Throughput statecharts
— Predictability
— Capacity
_ Safety @ QoS Requirements are
_ Reliability ~~" modeled as constraints

Real-Time UML T Telelogic

System Use Cases

% SleepyTime Anesthesia System
Physcian\ %

Display Patient
Status Surgeon

Display

Alarm on
Critical Event

U

-]
Patient\

Chart

Xecorder
X

ECG
Meonitor

A

Hospital
Information
Network

Ventilate the
Patient

Deliver
Anesthesia

—

Gas Supply

Deliver
Inhalant
Anesthesia

Deliver Injection
Anesthesia

10 Real-Time UML T Telelogic

Use Cases Are Not ..

* A functional decomposition model of the system internals — that's HOW
— They do not capture HOW in any way
— They do not capture anything the Actor does outside of the System
— How do | capture HOW?
» Use Object Model Diagrams to capture Static Structure

» Use Sequence Diagrams and State Diagrams (or Activity
Diagrams) to capture Dynamic Behavior

11 Real-Time UML T Telelogic

12

Good Example: Cardionada

ZF Rhapsody by l-Logix Inc. - [Use Case Diagram: Use Case Diagram in Default]

Tl Fle Edit WView Code Lapour Tools Window OCptions Help

=lofx]
== x]

DR e=e|(82 QQ@ER|B 2 8| X = | £i|oeurconts

Sloc|szEras|se|||we| |

N
o
Set Pacing Mode
{Mode is one of [Off, AAIl, AVI,
= VI, AAT, VWT}
Set Pacing [
Parmeters {Set Rate in units of PPM from 30..120 inclusive
Set Pulse Width in units of ms from 1.5
Set Pulse Amplitude in units of mV from 1..10}
Programmer
Report
Pacemaker Status
{See "Communications Reliability. HTML" for
e reliability requirements;
Battery Voltage reported within 100mV}
Pace The Heart
N {Pulse rate accuracy +/- 10ms;
Pulse Width accuracy +/- 0.25ms;
Pulse Amplitude accuracy +/- 2mV}
Heart
_

|»

| o

I

[wved, 16, May 2001 [10:52 AM 4

Real-Time UML

© Telelogic AB TEJEJ og Ic

Bad Example: Cardionada-NADA

ZF Rhapsody by l-Logix Inc. - [Use Case Diagram: Bad U se Cases in Default] 5 o] x|

=l File Edit WView Code Llayour Tools Window Options Help == x|
Wrong Actors DEd|: =8| 82 QQafEiE| B e 8| X = | EDeutcons Slac||rizHrox|sn|

J]@ | |

BAD Cardionada!

Receive Heart
Signals Send Bits
"--....,_““
Pace the Heart /

Programmer
Close Reed
Switch
Charge Output
Capacitor

Not primary capabilities
/ Output

17 Capacitor

lAssumes a design "
[[[[[zat3Mar 2001 [134 PM

Real-Time UML T Telelogic

'‘—‘—-—-—._._,__

Ventrlcular
Heart Diode

Receive Bits

Atrial Heart

\
-

Reed Switch

Al

14

Things to avoid

* Single messages are not use cases!
— Use cases represent a large number of different scenarios
— Each scenario has many (possibly hundreds) of messages
* Low-level interfaces are not use cases
— Low-level interfaces are means to realize use cases
— LLI's are subsumed within actual use cases

— A use case should map to a reason for the user to interact with
the system, not the means by which it occurs

Real-Time UML T Telelogic

Detailing Use Cases

* By operational example
— Use scenarios captured via sequence diagrams
» Each scenario capture a specific path through the use case
— Partially constructive
— Infinite set, so you must select which are interestingly different
— Non-technical users can understand scenarios
* By specification

— Use an informal (e.g. English) and/or formal (e.g. statechart) to
represent all possible paths

— Fully constructive
— Non-technical readers might not understand formal specs

15 Real-Time UML T Telelogic

Use Case Description

16

................................ a N
Entire Model Yiew ¥ o

=51 SleepyTime %

+-1 Components

+-(1 Cbiect Model Ciagrams]

+-_1 Packages Dl i in
B Text Editor

e Name: Alarm on Critical Event
Purpose
e The purpose is to identify when the patient is at
imminent risk and identify these to the attending
anesthesiologist so that appropriate action can be
taken
e Description
¢ The system shall identify and annunciate cardiac
events of risk SERIOUS or greater within 10 seconds
of their occurrence
o Alarms shall flash on the screen until cancelled even if
the alarming condition ceases

L]
e Preconditions
e System is properly configured and has been initialized
 Postconditions
e Alarming conditions are displayed and audibly
announced
e Constraints
e Alarms shall be filtered so that each patient condition
results in a single annunciated alarm

QK Cancel ‘ Help ‘

Real-Time UML

SleepyTime Anesthesia System

Display Patient

Status ‘

Alarm on
Critical Event

Ventilate the
Patient

Deliver
Anesthesia

Deliver
Inhalant
Anesthesia

oyl

7/ .
Remote

Surgeon
Display

—X

Chart

Xecorder
A

ECG
Monitor

A

Hospital
Information
MNetwork

© Telelogic AB TEJEJ og Ic

Detailing Use Cases: Scenarios

* A typical system has one dozen to a few dozen use case

* Each use case typically has a few to several dozen scenarios of
interest

* Scenarios capture a specific actor-system interaction
— protocols of interaction

— permitted sequences of
message flow

— collaboration of structural elements
— show typical or exceptional paths through the use case

17 Real-Time UML T Telelogic

18

Example: Use Case Sequence Diagram

:Physician

‘Patient

etLeadPair(l, IV, é—IANNEU)

HearthThrobSystem

Use Case: Display Waveforms

etWFDispIay(CHéNNEU . SCROLLING)

[T Y B]

etWFDisplay(CHANNEL 1, MMS_50)

etLeadPair(ll, Il é—IANNELZ}

Scenario: Scenario 1 - Sunny Day
Description: The system is set up to run in scrolling mocdle,
doing a I-IV pair for waveform 1 and a Il pair for waveform 2.

The timescale is set to 50 mm/s for channel 1 and 12.5mm/s

etWFDispIay(CH@\INELZ SCROLLING)

for waveform 2.

L7 I

etWFDisplay(CHANNEL2, MM_12p5)

Preconditions:

enableWFDisplay(f

Patient is anesthetized and connected using a 5-lead system.

7
-
.

Data has been displayed

Now tha
two logi

AN TARSAN ARSI

he display is enahléel the waveforms are displayed
| threads below arej:unning in parallel, at different peliodic rates

paralle

[condition]

o

[until user terminates]
getDiﬁerentlal{l,IV}J_ T

|
|
|
|
|
i
i
I
|
| Postconditions:
|
|
|
I
|
|

1

getDifferential(ll,) = . —

—
| e

RS R EER AR N

P’——| filterData()
;‘ recduceData()

|
|
i

[condition]

until user termnates]

NEN SRR, R

I R R O I AN

s

Real-Time UML

Rt

=}
{Datais
acquired at rate
TBD
periodically}

o
{Datais
displayed at

- rate TBD,

periodically}

© Telelogic AB Te"e; ﬂg Ic

Detailing Use Cases: Statecharts

— |

Physcian

% SleepyTime Anesthesia System %

Display Patient
Status Surgeon

Display

Alarm on
Critical Event

U

-]
Patient\

Chart

Xecorder
X

Ventilate the
Patient

ECG
/ Monitor
Deliver
Anesthesia
Gas Supply g %
Hospital
i iecti Deliver Information
Deliver Injection
Anesthesia Inhalant_ Network
Anesthesia

19 Real-Time UML T Telelogic

Detailing Use Cases: Statecharts

7 Rhapsody in C++ by I-Logix Inc. - [Statechart of : Alanm On Cnitical Event *]

EFHZ Edit View Code Layout Tools Window Options Help

~l=l x|
==l

PEE s me (@2 o wrRQAQEEE (X |[THYraFs 58

“l&& Oz IDefauItComponent

L" DefaultConfig

Bl ===l

. x|

EntireModel View ¥
=B Sleepyrime

®-C1 Camponents

-5 Packages

eeB|WEEO 8008l 0|A

AlarmStates

/" AlarmingConditen_Status

conditionActivate/GEN(regular)

\' ConditionActive [*

) Sound_Processing
silence

silence

. 4

conditionCeases/GEN(greyOut)

Conditionlnactive

Alarm on Critical Event
use case for handling
individual alarms.

-
i}

conditionActivate

AlarmTonelnactive

) .tm(SILENCE_TI ME)
GEN(stopSilence)

‘\(RegularDisplay

- .
AlarmToneActive
tm{ON_TIME)/
_sound({ON)
> ToneOn ToneOff
7 tm(OFF_TIME)/ |
_ sound{OFF)

DisplayStyle_Processing

Acknowledgement_Processing

F 3

/ WhaitingForAcknowledgement

Viewed

stopSilence

silenc

Y,

greyou g GreyedOut
regular

Acknowledged

[IS_IN(Conditiorjinactive]

conditionCease

Alarm on
Critical Event

tm(SILENCE_TIME)

AlarmHandled

1. Deliver A [B Deliver A [B Deliver A 55 Alarm On ..EDeliverA

20

Real-Time UML

| Thu, 22, May 2008 407 PM

© Telelogic AB TEJEJ og Ic

UNIFIED o

MODELING
LANGUAGE

21

How do we describe
structure using UML?

Real-Time UML

© Telelogic AB Te;e; og Ic

Objects, Classes and Interfaces

* An object is a run-time entity that occupies memory at some specific
point in time
— Has behavior (methods)
— Has data (attributes)

* A class is a design-time specification that defines the structure and
behavior for a set of objects to be created at run-time.

— Specifies behavior implementation (methods)
— Specifies data (attributes)

* An interface is a design time concept that specifies the messages a
class receives (“provided”) or uses (“required”)

— Specifies behavior only (operation implementation)
— May have virtual attributes (no implementation)
— May have a protocol state machine (no actions)

22 Real-Time UML T Telelogic

What is an Object ?

* An object is one of the common building blocks in a UML model.

— Software: It can represent a system, a subsystem or a specific software
element in a concrete programming language.

— Systems: It can represent a real-world system, subsystem, or element
* Several definitions are available:
— An object is a real-world or conceptual thing that has autonomy

— An object is a cohesive entity consisting of data and the operations that act
on those data

— An object is a thing that has an interface that enforces protection of the
encapsulation of its internal structure

23 Real-Time UML T Telelogic

24

Objects can be ...

* Software things

— Occupy memory at some point in time

— E.g. CustomerRecord, ECGSample, TextDisplayControl
* Electronic things

— Occupy physical space at some point in time

— E.g. Thermometer, LCDDisplay, MotionSensor, DCMotor
* Mechanical things

— Occupy physical space at some point in time

— E.g. WingSurface, Gear, Door, HydraulicPress
* Chemical things

— Occupy physical space at some point in time

— E.g. Battery, GasMixture, Halothane
* System things

— Occupy space at some point in time

— E.g. PowerSubsystem, RobotArm, Space Shuttle

Real-Time UML

© Telelogic AB TEJEJ og Ic

25

Classes

* A Class is the definition or specification of an object

* An object is an instance of a class

* An object has the attributes and behaviours defined by its class
* |t is common to have many instances of a class at the same time

Sabj ect) / \

is an instance of
24
/7
/7

7
e

Phil (Object)

Real-Time UML T Telelogic

Class Diagram

TextView Knob
agentView | 1 selectknob|1 |1 levelKnob 1 lconicVew
GasFlowSensor
fullnessView | 0,1
1 1 |3 1
DeliveryController
) 1 1| Agent_Resevoir 1

= commandedConcentration:double
= activeReservoir:int Valve 1
= selectedAgent:AgentType 1
& selectAgent(a:AgentType):void |~ AlarmingSource Button
& setConcentration(pret:double):void T —
& getVolume():double
& setSelection():void 1 ;
W select():void 1 ’

1 1 Alarm AlarmManager

1 EMG_Monitor 1
AirSupply] alarmView 1 alarmListView | 1
TextView | 1] Listview

depthOfAnesthesiaView | 4

1 HistogramView
Heater

Real-Time UML T Telelogic

Structural Diagrams

* Diagrams serve many purposes
— System model-capture & specification
— View aspects of system design
— Provide basis for communication and review

* Diagrams bring 2 things to the design process

— Represent different aspects of design, e.g.
* Functional
 Structural
« Behavioral
* Quality of Service
— Show aspects at different levels of abstraction
« System
« Subsystem
« Component
* “Primitive” class

27 Real-Time UML

© Telelogic AB TEJEJ og Ic

28

Interfaces

* UML interfaces specify operations or event receptions
* UML Interfaces have no implementation
— No methods
— No attributes
* Classes realize an interface by
— providing a method (implementation) of an operation or
— specifying an event reception on a state machine

* A class that realizes an interface is said to be compliant with that
interface

— Classes may realize any number of interfaces
— Interfaces may be realized by any number of classes

Real-Time UML T Telelogic

Interfaces

«Interface» ainterfacey
iIStopStart -
Full Interface ITick
view
&l evGo():void _ _
B evStop():void Btick():void
Class realizing
the interface
A
Timer - :T:fqr;"“’«‘d Waxer_Class B
erface
i Tick
[1 clockPort QX
controIPor‘t/ 1
B evGo():void _ B tick():void
B evStop():void =ap st iStopStart
Provided
Interface
29 Real-Time UML T Telelogic

30

Relationships

* Relationships allow objects to communicate at run-time
* Objects may use the facilities of other objects with an association

* There are two specialized forms of association:
— Objects may contain other objects with an aggregation
— Objects may strongly aggregate others via composition

* Classes may derive attributes and behaviours from other classes
with a generalization

* Classes may depend on others via a dependency

Real-Time UML T Telelogic

31

Associations

* Associations allow instances of classes to communicate at run-time
— Instances of associations are called links
— Links may come and go during execution

* Denotes one object using the facilities of another

* Lifecycles of the objects are independent

* Allows objects to provide services to many others

Real-Time UML T Telelogic

32

Associations

* Associations may have labels

— This is the “name” of the association
* Associations may have role names

— ldentifies the role of the object in the association
* Associations may indicate multiplicity

— Identifies the number of instances of the class that participate in the
association

* N

e *

e 1.[n|*
* Associations may indicate navigation with an open arrowhead
— Unadorned associations are assumed to be bi-directional
— Most associations are unidirectional

Real-Time UML T Telelogic

Aggregation

* Indicated by a hollow diamond
* “Whole-part” relationship

— Denotes one object logically or physically contains another
* “Weaker” form of aggregation. Nothing is implied about

— Navigation

— Ownership

— Lifetimes of participating objects

ZommunicationsGnome &
+incoming() <::1—1 essageliusus
+evReceiving() OUYDUt(}])
+EOM() P I—
+Donesendingt) inputC
+RS_Closel) \/ r
+RE=_Open()

Real-Time UML T Telelogic

34

Composition

* Indicated by containment or a filled aggregation diamond
* Whole both creates and destroys part objects
* Composite is a higher level abstraction than the parts

— Allows the class model to be viewed and
manipulated at many levels of abstraction

* “Stronger” form of aggregation

— Implies a multiplicity of no more than one
with the whole

* Forms a tree with its parts

=]

Real-Time UML T Telelogic

Composition Example

System System

]
‘AcquisitionSubsystem

:FrontPanel 1 1

AcquisitionSubsystem FrontPanel

AcquisitionSubsystem

1 1
:Acquisition 1 :Filter 1 1 1
Acquisition 1 Filter 1 Measurement ! !
] Keypad Display
1
:Measurement

TWO Ways Button LED

FrontPanel t h
Keypad / O S OW
:Keypad
8

composition

:Display

LED

Real-Time UML T Telelogic

Relationships

Track 1
1
-
B . i
] s .
Multiplicity Generalization ~. o Velocity
.
H dLattitude:double
AT N Composition H dLongitude:double
\ N\ H dAltitude:double
\ Target 5
it MultiSensorTrack
| H damageLevel:int 1 1 1
\ M targetType:int M dataSource:int dataSource[MAXTRACK]:; Position
itsTarlget H isThreat:bool
™ priority:int H latitute:double
— : H longitude:double
E|dent|fyTargei():vmd_ H altitude:double
Wevaluate Threat():void M timeOfvleasurement:int
Aggregation H dateOfMleasurement:int
itsTarget |* 1 1 -
& :
1 FlightPath £ MultiSensorTrack
actualFlightPath 1
1
projectedFlightPath 1 1
TargetingSystem FireControl Missile
1 1 1 1 "
itsTargetingSystem Association
1 o
" 1 o o=l
L —~
MissileTransaction .
1 Controls delivery of >
—

— .. Association Label

36 Real-Time UML T Telelogic

Dependencies

* A dependency can be used when a
class has no direct relation to
another class, but depends on it in
some way.

Measurement <<Usage>> ErrorMianager

— A Dependency stereotype (<<>>)
details how one item is
dependent on the other

LinkList

— One class may depend on erator <<Friend>>
another to build an executable
from code with a <<usage>>
dependency

— A Use Case may depend on a
class that realizes its required
functionality

Library <<Bind>> Collectiort--7------ .

37 Real-Time UML T Telelogic

UNIFIED o
MODELING
LANGUAGE

Advanced Structural Concepts

38 Real-Time UML T Telelogic

39

Advanced Structural Concepts

* Flows
® Structure Classes
* Ports

Real-Time UML T Telelogic

Information Flows

* Information flows are an abstract view of collaboration
— Information items represent data

* Similar to data flow diagrams
— Non-constructive
— No sequence is shown

* Information Flows are details with data elements known as Flow
Iltems

— Flow Items can be primitive types, records containing other items, or
even classes

* Operations and event receptions on the target class will realize
information flow

— Information flow items will be parameters or return values of the
operations

40 Real-Time UML T Telelogic

Item Flows

wsyste ma
Rocket
RefuleingPort 1.2 FuelTank
D_qﬂﬂx}[] 1 CombustionChamber
refueilingPart T MixingChamber
1 o v u| .
'T' afl e oFuelbiture @ Fueltixturelnflow
FuelOutflow — — — —>] - a
Fuellntake eflowes FuelMizture
[——
[| 1.2 DxygenTank Oxygenlntake Fuelbdixzture Ootflow _
CxyFillPprt '—)[I:I %Dm’ ‘)[E n_r BurnedGasRelease
OxyFillP OxygenOutf flow |
uyFillFort EygenUiutilow
Exhaustyasintake ,¥
E11H
1 ExhaustRelease
.S
Relations] Tags] Fropertiez =
General Attributes l Operations] Parts ExhaustGas Dutflow
_ ExhaustGasOutflow
1 B X _)é]
sflowes
Marme | visibilty | Type | Initial —
M fuelPercentage Public double
E oevgenPercentage Public double
M FlowRateCCPerMin Public double
<Mew =
4 I 2 =
Lucate| 0K | |

41 Real-Time UML T Telelogic

42

Structured Classes

* A structured class is a class that is composed of parts

— The structured class is responsible for the creation and destruction of its
parts

— The structured class “owns” the parts via composition

* A part is an object role that executes in the context of the structured
class

— Parts are typed by classes
* Parts are connected via connections

— Connections are contextualized links
— The structured class links together the parts as necessary

Real-Time UML T Telelogic

43

Structured Classes

°* PRIMARY USE: show systems at different levels of abstraction

— Composite is at a higher level of abstraction than the part (e.g. system and
subsystem)

— Composite achieves its behavioral goals primarily through delegation

* Additional use: Populate simple classes into «active» classes for
concurrency

* Additional use: Use composites to aid in system boot and object construction

Real-Time UML T Telelogic

Structured Class

SensorAssembly
1 positioner:Gimbal
xPort
1 xAxisMotor:Motor []
= position:int posor : xPorti
' T yAxisMotor:Motor 1 L Wiise o akar
= moveTo(x:int):void: = position:int posPort yPort ssionPort missfonPort
D—DTD missionPort [1
or
= moveTo(x:int):void: y
w measureAt(x:int,y:int,nSamples:int):void
= config(sampleRate:int,resolution:double):void;
1
sensorPor
1 theSensor:Sensor
1
1 ADConverter DataManager r_{|:mdPort
L
dataPort
] |] .
dataPort = getData():void T e " d:DataSample
= value:double;
wfilter():void

44 Real-Time UML T Telelogic

45

Parts and Ports

* Ports are “named connection points”

* Ports allow a part to provide an interface across the boundary of its
enclosing structured class without revealing to the client of the service
the internal structure of the structured class

— Client “talks to” the port without internal knowledge
* Ports are “typed by” their interfaces

— Provided interfaces
— Required Interfaces

Real-Time UML T Telelogic

Parts and Ports

Ventilator

Display

46

itsO2Sensor:02Sensor

+value : RhpPositive

+getValue():RhpPositive

Ports allow the delegation
behavior to be explicitly
modeled. However, the
client only knows that

it talks to the port, not
which internal part.

theDisplay:Display

Composite class

must delegate the
service request off

to the correct part
specified in a Ventilator
method or in its
Statechart

itsVentilator:Ventilator

sensorPort

I'
L

L

itsO2Sensor:02Sensor

+value : RhpPositive

+getValue():RhpPositive

Real-Time UML

© Telelogic AB TEJEJ og Ic

Interfaces with Ports

* Ports are typed by their interfaces
— Provided interfaces specify services offered
— Required interfaces specify services needed
— A port may have either or both

Port : ServicePort in ArchitecturalBlock

General Contract]Helatinn&] Tags] F'ru:upertie&]
Provided Interfaces

|7 Provided Add.
-8 iTest
& BITTest
& FOsT

E ey T est O [:I
ilnterlock SystemPort

ConfigPort iPower
Required Interfaces

-8 iDizplay A Add . :l
B showText iOpen
B showdlarm
& confighizplay
& setColar e]

E evEnable
B s=tlp :

- iTest iDisplay
| ServicePort

ArchitecturalBlock

FunctionPort iCommunications

il

anatt:| 0K |

47 Real-Time UML T Telelogic

Port Example

PilotContralsPart

O—]
iSpeedSet, iAttitudeset

L

.iDirEl:tiDnSEt CnntanPDH’J_‘

DisplayPort

O—F—1
iIShowAircraftData P

ThrusterControlPort

1

ThrusterManagementSubsysterm

PuositionContraol

Alrcraft
iSpeedSet iAttitudeSet,iDirectionSet Mavigationsubsystern
O ibirectionSet | PositionPart iDirectionSet
A ibirectionSet
1 AvionicsSubsystem NavPort - HJ_‘ pngpm’J_‘
L oS0 1 theGPSIGPSSubsystem
iirectionSet 1 theINS:InertilsTff{JavSuthStem
—
AttitudeF'nnT -
6 iAttitudeSet
iAttitudeSet
,J_‘ AttitudeControlPort
1 AttitudeCﬁtrnlSuthatem 1 WingSurfaceControl
AngleContralPort PositionContral
1 O
iPosition iPosition
—
ThrusterControlPort L|J
iThrust
1 AetlionContral
’l‘iThruat
LI

. O..‘[E
iPosition

48

Real-Time UML

© Telelogic AB Te"e;ogjc

UNIFIED o

MODELING
LANGUAGE

49

How do we
describe behavior?

Real-Time UML

© Telelogic AB TEJEJ og Ic

50

Sequence Diagrams

* Sequence diagrams show the behavior of a group of instances (e.qg.
objects) over time. Instances may be

— Objects (most common)
— Use case instance
— System
— Subsystem
— Actor
* Useful for
— Capturing typical or exceptional interactions for requirements
— Understanding collaborative behavior
— Testing collaborative behavior

Real-Time UML T Telelogic

Sequence diagram : Basic Syntax

Gas Physician Ventilator Gas Flow Gas
Supply Sensor Pressure
Rprran

| | | |
synchronous \+“ I setGasSupplyLevel() : :
message | = S - | PPy < | e ~ Lifeline
» \ !set(GasSuppIyLevel) | |
‘ack() | | |
: i ": enable() :
pattition line | | setLowAlarmLimit(LowAlarmValue) N { <2 seconds }

Gas cannpot be delivered due tolobstructlon lowFlowAlarm() |

7Y
J; tlmlng

|

|

|

|

|

|

|

|

| |

| |

[~ |

| i hqghPressureAlarm(|
¢ I constraint

|

|

|

|

|

|

|

|

|

|

|

| |
|
| state or Ea | |

condition . S
: I < Gas Supply Fault > : \

\

| alarb(Gas_Supply_Fault) | |
| | —_ | asynchronous
| e | message
| emergencyShutDown()
|

- Gas Supply Faultis one of

{

o Gas supply failure
e« (Gaspipeline leak
*

|
i
|
|
: Gas pipeline obstruction }
|

51 Real-Time UML T Telelogic

Special Case: Execution Occurrence

* Execution occurrences are useful for the sequential
message exchanges

class_7 class_8 class_9 class_10
msg0()
Execution
occurrence \ msqlf)
DA
msg2()
< ______
msg3()
msq4
Return 940
= ————— <= === =-
\ msqa(] i
AN msgb()
<=
N e

52 Real-Time UML T Telelogic

53

Deriving Test Vectors from Scenarios

* A scenario is an example execution of a system

* A test vector is an example execution of a system with a known
expected result
* Scenario - Test Vector
— Capture preconditions
— Determine test procedure

+ |dentify causal messages and events

* Instrument test fixtures to insert causal messages
— Remove optional or “incidental” messages
— Define pass/fail criteria

* |ldentify effect messages / states

* Postconditions
* Required QoS

Real-Time UML T Telelogic

Stimulating the System

% Rhapsody by I-Logix Inc. - PBX_With_Telephone = IEIIEI
File. Edit Miew i;cu:h_a Tools Window Options Help
S . A I- Hw* = [=] . . 7 W T
D & M| TestEnvironment (B B ® B\ X # | Fffun G0l apicaton ==
R, |EEEE binds actual instances
— | |=-0 P .
T 3.0 L0 1Instance parameters || name: IH_::afk\‘T’
= "E i as necessary Default Fackage: IF'I::HF'kg j
— |- ackages —
. knce Diagrams = Sequence Diagram: X_calls ¥ = II:IIEI
Test Environment Or fimated Capture_.ﬁ.ll_Tel\m{ ;
: callers
user plavs the nswering_Call i
« pay . slling_Fusy_Phone Line; Line
Collaboration spture_All_Telephones P
Boundary” ’”:ﬁfe : ?
F--I L et i
B B minging_anather_Party /E*"Dm"':”:'kﬂ "
E ~$ stub_Ring
=] ~FH X _calls Y I evDialTone()
b - B w calls_v_when_offhook 5
#-[Z] Use Case Di
& & e e ﬁrmigitDia|ed(Digit:recewersgigiﬂ)
/QDigitDialed(DigiFreceiversgigitEj
/ 2 evHeleasel)
Test Environment binds |:
»
actual values to passed
For Help, press F1 . | | | | Mon, 19, Mar 2001 |12:35 PM 2
operation parameters as

54

necessary

© Telelogic AB TEJEJ og Ic

Decomposing Sequence Diagrams

* Sequence diagrams suffer from scalability problems when there are
many

— Lifelines
— Messages

* UML 2 provides the ability to decompose sequence diagrams both
vertically and horizontally

— Lifelines may be decomposed into interactions (separate sequence
diagrams

— Interaction fragments may be referenced on another diagram

55 Real-Time UML T Telelogic

Sequence Diagrams

PrimaryP:Pedestrian Primaryv:Vehicle :Responsive Cycle Mode SecondarytVehicle SecondaryP:Pedestrian

ref Scenario 2 Detail

% | DontWalk() =/ _?
User Case: Responsive Cycle Green() | "'/
Mode i %
o - walk() | 7
Scenario 2
Preconditio Scenario 2: Operational Contracts Mapped to Subsystems
Iode: Respd
Primary anﬂ (B Intersection Primary Primary Secondary Wehicle Secondary Secondary
the same Controller “ehicle Light Pedestrian Sensor Assembly “ehicle Light Pedestrian
Road directio Assembly Light Assembly Light
Turn lanes: T
Turn lane ma | | goRed() | | | _l |
Pedestran li | | | | [il |
Green Time 3 - et
e D I~ | goDontwalk) | | Referenced Sequence Diagram: Detect Vehicle
m::}; t_li_ir:n9921ﬂ |= | | | =i Intersection Prirnary Prirnary Secaondary
Green Turm T | galsrean() | Cantroller V;hiu:le Iﬂ;ght F'edLn_as;J:ian '\é‘ehicle
Green Yello |.- | Green() | | | | SSE|rT'I ¥ IQli Er‘iSDr
g:i;:;::lg' c?;' | ! goalk() ! "-=! | vehicleDetect) | | | |
T Walk() - . . » ,
Frimary walk |t | | | tr(debounceaTime)
| | | 4 | | |
ref | | | | |
Detect Wehicle | P | | | checkStatus() |
validateq) | | I
| | | = icIeSta’[usO| | |
| [tltm(BJDDEI] | | —__C___T___Tﬁicl_eDﬁc?
| | gnFlashingDnntWalJlnj __! | | |
|__ | FlashingDont'walk) | | | |

56 Real-Time UML T Telelogic

57

:Physician

Interaction Operators

‘Patient

etLeadPair(l. IV, é/HANNEU)

HearthThrobhSystem

etWFDispIay(CHﬁNNEU. SCROLLING)

[T I

etWFDisplay(CHANNEL 1, MMS_50)

etLeadPair(ll. lll, é—IANNELZI

etWFDispIay(CH@\INELZ SCROLLING)

Lo I N

etWFDisplay(CHANNEL2, M_12p5)

enableWFDispIay(f

7
-
-

Use Case: Display Waveforms

Scenario: Scenatio 1 - Sunny Day

Description: The system is set up to run in scrolling mode,
doing a |-V pair for waveform 1 and a Il pair for waveform 2.
The timescale is set to 50 mm/s for channel 1 and 12.5mm/s
for waveform 2.

Preconditions:

Patient is anesthetized and connected using a 5-lead system.
Postconditions:

Data has been displayed

Now tha
two logi

S TN T AR R

he display is enal:léd the waveforms are displayed |
| threads below areﬁunning in parallel, at different pelliodic rates
]

paralle

\\\\\\\\\\\\\\\\\\ﬁ L\;\
=

getDifferential(ll, Il

= . &) .
[condition] | {Data is
[until user terminates] | __| acquired at rate
getDifferential(llV) | ___ _ ——1 1 -4 TBD
| o] periodically}

A A

E filterData()

e T

—

"

reduceDatal)
L——|)
—— e e e e e S e {Data is
f Z [eanditian] | displayed at
I00|§ Z{until user termnates] | e ":: rate TBD,
7 - updateDisplay(CHANNEL1) | __ ——[" ¥ periodically}
. ¢ . | e
? 2, updateDisplay(CHANNEL?2) | o
Z Z |
7 [
|

Real-Time UML T Telelogic

UML 2.0 Timing Diagrams

:Atrial Model

sd Pacing)
state or value timing constraint R tm(PuIse_tm)
{ sense_tm +/- 0.5ms }
Pacing timing constraint I
{20 +/- 0.5ms }
Sensing I
Refractor T
y A Sense
tm(Ref Time) tm(Sense_tm)
ldle
event or stimulus
lifeline o /‘
To Inhibited
—t 44—+
0 10 20 \1 tick mark values Time \{ timing ruler

Real-Time UML T Telelogic

59

UML 2.0 Timing Diagrams

sd Communicating)

3 label1
qz, send(value) label
o Idle -
0 -
c Receiving
o
- Sending \
- o _ transmit(value) event or stimulus evDone
0>’ Receiving::High
E Receving::Low {1 lriT +/-0.2ms}
% Sending::High
&
Sending::Low
J . f {5 ms +/- 0.2ms}
Tristate tm(bitTime)
e label lifeline separator
1 59
S Initializing send(value)
= Acquiring
o .
= Reporting
Idle
| | | | | | | | | | | | | | | | | |

Real-Time UML

© Telelogic AB Te"e; ng c

60

State Behavior

* Useful when object
— Exhibits discontinuous modes of behaviour
— Waits for and responds to incoming events

* Sensor example

— In Start up
* It must be configured before it can be used
* It may be turned off
— When it’s ready
* It rejects requests for data (data not yet available)
* |t can go acquire data upon request
— Once it has data
|t may be asked for the sensed value (data has been acquired)
* It may get data periodically

Real-Time UML

© Telelogic AB TEJEJ og Ic

61

State Machine Execution

Rhapsody in J by I-Logix Inc. - Ri]_Stopwatch.rpy - | Dlll
File Edit ¥iew Code Layout Tools ‘Window Options Help
psdsmreet o wralecrBEE (x| [THraFs|sn|
I AR . YA [Debug Hle«spsel [aoo= =
Hhad = i
_ A Y = :Sequence Diagram: Animated Morma _I— _ID zl e Statechart of : Timer - Stopwatch
Entire Model View = — o Timer Gui evHeld
EI@ quiPkg - I Ty
- Classes % F" resety -\
B = N
E BG::':OI'I E ;mstﬁor_ _— T — — — — ’nitGuiO ;I lshowtlrue):
B stopwatch I bl ﬁﬂﬂor_ — ;‘ it e\rFr\ess.;
EIE, Timer - [e=etl) »
- Attributes 153 it = truz) gvfrezs
E@ Instances E playiminutes = 0, b = tnig | seconds = |
.00 Stopwatch[0]- itsTimer[0] o _
E Operations E--I unning
BH Relations
t
£, Statechart _I
I:I---/ Events =
#1771 Ohiert Madel Dianrans =)
¢> r5 Statechart of : Button - Stopwatch[0]- =
Instance Name: |Stopwatch0]-»itsTimer[0]
; _ evPress
Altributes: idle r| pressed
Name Vahie |.Type “evRelease/ —
minutes 0 nt its Tirmer. gen(rew evPress(), tm (2000}
seconds 0 int 8 ' itsTimer. gen
¥
evFRelease [—
held
Relations:
itsGLil0] . =
- ol | >4l
4| | »
Locate | oK | Apply | | E Buttor - Sto...lETimer E Stop...lHAnimated Nl
X[Executable is |die x| x| =]
2| Executable is |die 2 2

[ATA TR ¥, Build A, Check Model } Configuration Managerment

-
4 3

Event Queue

[[5un, 14, apr 2002 [4:53 PM 2

Real-Time UML

© Telelogic AB

Telelogic

62

Statecharts

* Created by professor David Harel of I-Logix in late 1980s

* Statecharts were inserted into the UML by Eran Gery and David
Harel of I-Logix

* Supports
— Nested states
— Actions
— Guards
— History
* Advanced features
— And-states
— Broadcast transitions
— Orthogonal regions

Real-Time UML T Telelogic

63

J What's a state?

Statecharts

A state 1s a distinguishable, disjoint,
orthogonal condition of existence

of an object that persists for a
significant period of time

d What’s a transition?

A transition 1s a response

to an event of interest moving
the object from a state

lo a state.

Real-Time UML T Telelogic

64

Statecharts

J What's an action?

An action 1s a run-to-completion
behavior. The object will not accept
Or process any new events until

the actions associated with the
current event are complete.

J What's the order of action execution?

(1)exit actions of current state
(2) transition actions
(3) entry actions of next state

Real-Time UML T Telelogic

65

UML State Models

* Specifies the behaviour for reactive classes

* Not all classes have state behaviour

* Notation and semantics are Harel Statecharts
— Nested States
— Actions on

* Transitions
» State Entry
o State Exit

Actions are run-to-
completion behaviours

Real-Time UML

© Telelogic AB Te"e; ﬂg Ic

Basic Statechart Syntax

Event parameters Guard

-

_

entry / g(x), h(y) <17 [Entry actions
exit / m(a), n(b) ~—__
ev3 /p(x,y), q(z)

A evX(int r)[r < 0] / f(r)

=\ L

Action List

A

Exit actions

66

Internal Transitions
("Reactions in State”)

4 \/

/

\

State

State name

Real-Time UML

© Telelogic AB TEJEJ og Ic

Basic Syntax Example

Transition Syntax: Default Transition

trigger [guard] / action list / Trigger
evFoeDetected/ ldle i tm(1000) /
wpnsToFire=2; [
i L / —
TimingOut
[FoeDetected]

[wpnsToFire == 0]

[else]
tm(500) FiringWeapons| Condition Connector
tm(1000)/
itsAand|Subsystem->GEN(evSysFireWeapon());
pns ToFire--;
Actions

67 Real-Time UML T Telelogic

68

Types of Events

* UML defines 4 kinds of events
— Signal Event
« Asynchronous signal received e.g. evStart
— Call Event
 operation call received e.g. opCall(a,b,c)
— Change Event
« change in value occurred
— Time Event
* Absolute time arrived
» Relative time elapsed e.g. tm(PulseWidthTime)

Real-Time UML

© Telelogic AB TEJEJ og c

69

Handling Transitions

- If an object is in a state S that responds to a named event evX, then it
will act upon that event

* It will transition to the specified state, if the event triggers a named
transition and the guard (if any) on that transition evaluates to TRUE. It
will execute any actions associated with that transition

- Handle the event without changing state if the event triggers a named
reaction and execute all the list of actions associated with that reaction

Real-Time UML T Telelogic

70

Transitions: Guards

* A guard is some condition that must be met for the transition to be taken
* Guards are evaluated prior to the execution of any action.
* Guards can be:

— Variable range specification ex: [cost<50]

— Concurrent state machine is in some state [IS_IN(fault)]

— Some other constraint (preconditional invariant) must be met

Real-Time UML T Telelogic

71

Actions

* Actions are run to completion
— Normally actions take a short period of time to perform

— They may be interrupted by another thread execution, but that object
will complete its action list before doing anything else

* Actions are implemented via

— An object’s operations

— Externally available functions
* They may occur when

— A transition is taken

— A reaction occurs

— A state is entered

— A state is exited

Real-Time UML T Telelogic

Null-triggered Transitions

~

[Polling 1 [isDataReady()] DataReady
)

_/

evPoll/
getData()

of any actions-on-entry. If the guard '/isDataReady() evaluates
to FALSE, then the ONLY WAY it will ever be evaluated again is
if event evPol/ occurs, retriggering the null-triggered transition.

Al Null-triggered transitions trigger immediately upon completion

72 Real-Time UML T Telelogic

Timeouts

* When an object enters a state, any Timeout from that state are
started

* When a Timeout Expires, the State machine receives the expiration
as an event

* When an object leaves a state, any timeout that was started on entry
to that state are cancelled

* Only one timeout can be used per state, nested states can be used if
several timeouts are needed

73 Real-Time UML T Telelogic

Timeouts

S

F

* Timeout Example:

trm (22000} delay_pall

I I
dle 'L pol T Palling

stop_polling \

trm (1000
poll_sensors

74 Real-Time UML

© Telelogic AB TEJEJ og Ic

75

Statechart Syntax — OR States

OR States

evTemparise

By

EvAIT

evDisarm

OR States

A

l

\

armed=
.._] exiting=

trmiEXIT_TIME;

-

entering=

actives=

N

triALARM_TIME) _
intrusion= silence
tr{EMTREY_TIME)

.

evDoor

L \/
‘_.(detecting

evhloverment

eviloverment

tm{SILEMNCE_TIME)

S

OR States

/

Real-Time UML

© Telelogic AB TEJEJ og c

OR-States

* An object must always be in exactly one OR-state at a given level of
abstraction.

— The object must be in either off or armed — it cannot be in more than one or
none

— If the current state is armed, then the object must ALSO be in either exiting or
active

— Note, if IS_IN(detecting) returns TRUE, then IS_IN(active) returns TRUE and
IS_IN(exiting) returns FALSE

76 Real-Time UML T Telelogic

7

Statechart Syntax — Nested States

finitd;

off

evTemparise

Nested States

RN

Composite State

4

/'

By

EvAIT

evDisarm

N

[l
l

trmiEXIT_TIME;

-

trmiEMTRY_TIME]

.

b

actuEb/ o_.[;dete cting \

evDoor

entering=

evhloverment

intrusion=

eviloverment

tm{SILEMNCE_TIME)

triALARM_TIME) _
silence

S

/

Real-Time UML

© Telelogic AB TEJEJ og Ic

78

Order of Nested Actions

* Execute from outermost - in on entry
* Execute from innermost - out on exit

Real-Time UML

U entry: f()) first f() then x(c)
exit: g(a,b)
ul entry: x(c) | A
X exit: yo) N i)
- D2
first y() then g(a,b)

© Telelogic AB Te"e; ﬂg Ic

79

Statechart Syntax — AND States

AND state name

N\

Orthogonal Component Separator

I active I

/

AND States

/ X ingDi [i X codeEntr evkey/ \
armingDisarmingReprogramming | y newCode = (10 * newCode) + params->n\
evKeyOff[IS_IN(correct))/ | evKey/ count++;
1 itsAlarmController->GEN(evDisarm);| new(tli);i.e=params->n m(5000)
I count=t; enteringCode VKevOff
idle | evkeyO
|
[IS_IN(correct))/ !
— i isCodeEntered
evkeyOn itsAIarmControlIer->GEN(evT%mporise); [0]
|
vKeyOn[IS_IN(different))/ !
evKeyOn[IS_IN(differen
changeCode(); [IS_IN(notEntered)] | |
| [else] [isCodeCorrect()]
- - v
reprogramming \) / \
waitOldCode | currentCode
|
| .
/ [else] ' different correct
[IS_IN(correct)] : tm (3000 im(3000)
[waitNewCode |
evKeyOff | [&—» notEntered
\| im(10000) AL" \)

Real-Time UML

© Telelogic AB Te;e; og Ic

80

AND-States

* When a state has multiple AND-states, the object must be in exactly one
substate of each active AND-State at the same time

* AND-states are logically concurrent

— All active AND-states receive their own copy of any event the object receives
and independently acts on it or discards it

— Cannot tell in principle which and-state will execute the same event first
— Not necessarily concurrent in the thread or task sense

— NOTE: UML uses active objects as the primary means of modeling
concurrency

— AND-states may be implemented as concurrent threads, but that is not the
only correct implementation strategy

Real-Time UML T Telelogic

81

AND-State Communication

* AND-states may communicate via

— Broadcast events

 All active AND-states receive their own copy of each received event and are
free to act on it or discard it

— Propagated events
* A transition in one AND-state can send an event that affects another

— Guards
* [IS_IN(state)] uses the substate of an AND-state in a guard

— Attributes

« Since the AND-states are of the same object, they “see” all the attributes of
the object

Real-Time UML T Telelogic

UML Pseudostates

Symbol

Symbol Name Symbol

Symbol Name

@ o @

7 1

[9]

i

[9]

Branch Pseudostate (fype @
of junction pseudostate)

~

Terminal or Final Pseudostate

Fork Pseudostate

-,

NP,

O

Choice Point Pseudostate label

X

label

Join Pseudostate

/\‘.\/v Junction Pseudostate

(Shallow) History Pseudostate

(Deep) History Pseudostate

Initial or Default Pseudostate

Merge Junction Pseudostate
(type ofjunction pseudostate)

Entry Point Pseudostate

Exit Point Pseudostate

82

Real-Time UML

© Telelogic AB Te"e; Dgf c

Statechart Syntax — Pseudostates

History

Fork

\

evStart

empty

evTerni nate

@

Terminator
(calls destructor)

83

Junction

active> /

tm(SOOO/

filingUpper> .—

evFull

upperFull>

upper

.

lower

tm(1000)

lowerFull>

fillingLower>

evPause
l evResume evAbor t
[pause —

Real-Time UML

Join

tm(50)

AN

Diag\ram
(must be a pair)

Termination
(Final state)

© Telelogic AB TEJEJ og Ic

Statecharts

Use Case: Fixed

Cycle Mode
/setSecondary(Red);

SetF’rimary(Red) | hdan age Frimary Traffic |

i

Starting ! izl e ‘_/—\mﬁ)
2
; tmiPrimany el Time W
tmiFrimal dTime
— ¢ i ! s etPrimaryR ed);

/ .y
[15_INCP rim any Turniv aiting)] =Tl sroirie BEN e Red)

tm(star1 | N aitfo rPTurnCy e le | GEM{eP TG reen)
| -

[eke]f

@ Tumntone ZEMNCeuF Turnb one)
GreenFed (] “rellowRed @
[turnModels(SIM)] "o et Primary e m) tm(PrimanG reen Time)[IS_INCP rim angD andini 2 b " | "eas et Primeny (el
&P rimary P edes trian Do ne .

Frimany TurnFroces sing |

ManagingTraffic_SIM |

i)

A
[\

|
|
| %
|

Frimary Proceszing. Mote the use of
submachines within the and-states a=
a mears to manage the state
machine complesity.

Real-Time UML T Telelogic

85

gamelver @

Submachines: Parent

ready

2

() evincreaselevelfitsLevel-»increase();

levStar‘[Stup

evstartStop

startinglSame

1

!

evtartStop

Exit point

=, remainingPieces = itsLevel->getPieces();. ..

ew3tartStop

changelevel();

l [rermainingFieces==0}/
Y

elze]f

| newFiece %‘
| | !

y

runningGame]

E_OVER

DONE

PAUSED &

evPauseResume

paused

M
e

rernovePiece ﬁ%‘|
]

Submachine
reference

Entry point

Real-Time UML

© Telelogic AB TEJEJ og Ic

Submachines: Child

Submachine
\ runningGame &
_ _ GAME_OWER
tmiitsLevel-=getDropTime)) [else] B
startup @
[isDropFossiblel)]
izDropFPossible
cantralling (2) [i 0]
|< [izDropPossiblel]
evlrop
trfitsLevel-=getDropTimel)
drapping ()

tm(10)

[else]

©

[else]

.,| drn:ped f?::'|

[i=DropFPossible)]

k.

[elze]

PAUSED

@

/

Conditional Pseudostate

86

DONE

Real-Time UML

© Telelogic AB TEJEJ og Ic

Poorly Formed Statecharts

Race condition

Must be same event

No Default
State <

Conflicting |

/

\/

e3

transitions

Overlapping

/

A few ill-formed (i.e. "BAD") state
maodeling coficepts

CoinDrop/
amount = coin

e,/
e

A

[amount>0]

[amount<=0]
\ Use before

initialization

guards

87

Real-Time UML

© Telelogic AB TEJEJ og Ic

88

Inherited State Behaviour

« Two approaches to inheritance for generalization of reactive classes
— Reuse (i.e. inherit) statecharts of parent
— Use custom statecharts for each subclass

* Reuse of statecharts allows
— Specialization of existing behaviours
— Addition of new states and transitions

— Makes automatic code generation of reactive classes efficient in
the presence of class generalization

Real-Time UML T Telelogic

89

‘»ﬂmmwmu—«ﬁﬂﬁ@]ﬁ]ﬂ\?[{

Example: Generalization

— Object Model Diagram: Ganeralization in Default =

Blower

&

/ Class generalization hierarchy

DualSpeed BlowerE

Multi HeatDuaISpeedBIowerg‘

&3 Statechart of : Blowan

S

evSwitchOn/
powerMotor(};

evSwitchOff/
depowerMotor();

Eﬁsmtechnr‘r of : MultiHeatDualSpeedBlowar

=N

1ol x|

o Added entry
evSwitchOn/ action
LED{OMY,
setPower{LOWY),
Added and-states
avSwitchOfff
LedioFF), on
Default
/ taHigh! —\
setPowertHIGH)
LowSpeed "l HighSpeed \
toLow{l5_IN(HighHeat))
setPower L OW)
Heating

%

evl owheat/
setHeat(L OWy)

MediumHeat
HighHeat

eviediumHeat/
setHeat{MEDILM)

Added nested states }/ vevHitheaﬂ | Added transitions

setteat(HIGH) and actions S

Off evSimitchOnf
LED{OM];
entryf powertdotor() T _setPowsr{LOW)
oy
T
N
evSwitchOfff \
Led{DFF); \'
\% on antry’ depowerhdotor);

toHigh!

setPower(HIGH]),
LowSpeed

Added nested }/
states

Added transitions
and actions

tol o

setPower{LOWY) HighSpeed

Real-Time UML

© Telelogic AB Te;e; og Ic

Activity Diagrams

* Change in 2.0 to be based on token flow semantics

* Used when the primary means of transitioning from one state to another
is upon completion of the previous activity not reception of an event

— An activity diagram can be assigned to either a class, use case or an
operation.

— Useful for describing algorithms
* Each activity has a set of pins
— Input pins bind input parameters to “local variables”
— Output pins bind output parameters to “output variables”
— An activity begins when input data appears on all input pins
— When an activity completes, there is data on all the output pins
— Activities are no longer triggered by events

90 Real-Time UML T Telelogic

Activity Diagram : Basic Syntax

Guard

Default Transition \I
[Initialise

BlackJack Player.selectAction()

X [total=21] F[husted -]
[elze]
Action state [total==21] (51)
Y - 21
[else] ; .
dCount==5 - -~
Conditional . leardount==al (Five Card Trick -
pseudostate [else]) ’
[acelnHand && (total == 11]] -~ -,
| Black Jack -]
lelsel yotal »15) —l v ow W
cout == "Stick " << total << endl; Stick
Y
Transition | —— g
[else]

[F‘Iay Again'] »é
J

Termination Connector
91 Real-Time UML T Telelogic

Activity Diagram : Advanced Syntax

nraspOhbject

Activity Block \

PDSMDﬂ'

Fork | |

\

Interruptible
Region [

Pin

Join |——

position

Elbowangle

\mﬂmgle
| Mowve Elbow

(:)‘ EmergencyStop ‘

Compute Joint

Angles ‘

Kneesngle ManipPosition

Rotate
Manipulator

Move Knee

7\7?71// Edge
|

% kneedngle ’i‘ manppk

Interrupting

~] Event
Reception

S~

Object
Flow State

92

Real-Time UML

© Telelogic AB TEJEJ og Ic

Activity Diagram: Partitions (Swim Lanes)

LRU1 LRU2 User1

(Check Input from User1 and User2]

[Mode1 and reqOp1]

Used primarily to *
allocate actions and (Mode3 and reqOpé] ode? andreadp

¥

activities to objects ED -
B2

Partition §<\ E

| display

93 Real-Time UML T Telelogic

UNIFIED o
MODELING
LANGUAGE

94

Architecture

Real-Time UML

© Telelogic AB TEJEJ og Ic

Physical Architectural Views

Component View

Telelogic

96

Physical Architectural Views

* Construct architectural design models
— Subsystem Model
— Concurrency Model
— Distribution Model
— Safety and Reliability Model
— Deployment Model
* Capture with
— Class Diagrams
— Package Diagrams
— Subsystem Diagrams
— Task Diagrams
— Deployment Diagrams

Real-Time UML

© Telelogic AB TEJEJ og Ic

Subsystem Architecture

wiystemOf Systems:
Coyote_lUnmanned_Air_Vehicle_Project

1.7 wSystemn
theGroundStation: CLUAY MissionPlanning ControlSysterm

SendCmdPort

Sy stemmn

thelay Yehicle:CLIAY Wehicle

pAtCmd

pEngineCmd

«Subsystem.» HSDLF L rqlghapEEdEﬁ\LPDﬂ g <SubSysteme pFlight
Ground Datalink S ———— L HSDLP Airhorne Datalink
ReceiveCrndPort]” | Tl f i | ol i
wSy stems i
CUAY_Vehicle pEireControl
1 afubzystamm
AttitudeC ontral
1 wubsystems
Mavigation o
oRethateContral pOnBoardCantral avgation ; prey— pMomg |missileCmdPort
FireContral 1
= pCmd pMData missileDataPort
pHydraulics
pControl radar_Port
1 «Sl\.'mfystem» . {1
MechanicalHydraulics I pFlight pDatalink pTargeting
pStatus T Subsystems pFireControl
FuelManagement 1 SR ystems
Targeting gFart radarDataFort
: A i ocS'g.l’StEITml_l
wSubsystemms A .
EngineControl = it=Radarradar Assernblby
pontrol —
i Recon
pbBoardContro pAttitude RET pFuel n
pRemoteControl Bubsystems
il Flinhttanagement CnnﬂgF‘nn
pAHCd pEngineCmd pHydraulics nTargeting
wSubsystems IR) «Sub'srz‘llstem» ; rl_tll'
; ; ; econnaisanceManagernen
HighSpeedDLPort HSDLP Airborne Datalink pEngine
LowSpeedDLFor pFlight pDatalink pDatalink:
pFireControl
nOptical nRadar
LT -
FLIR_Part optical_Port radar_Part © Telelogic AB Tle"e; ’c

Subsystem and Component View

* A component
— is the basic reusable element of software

— organizes objects together into cohesive run-time units that are replaced
together.

— provides language-independent opaque interfaces
— a metasubtype of (structured) Class
* A subsystem

— is a large object that provides opaque interfaces to its clients and
achieves its functionality through delegation to objects that it owns
internally

— contains components and objects on the basis of common run-time
functional purpose

— a metasubtype of Component

98 Real-Time UML T Telelogic

okl

Distribution Architecture

* Distribution model refers to

— Policies for distribution objects among multiple processors and
communication links, e.g.

« Asymmetric distribution (dedicated links to objects with a priori known location)
* Publish-Subscribe
« CORBA and Broker symmetric distribution
— Policies for managing communication links
« Communication protocols
« Communication quality of service management

Real-Time UML T Telelogic

;,:’ﬁ':‘ Rhapsody by I-Logix Inc. - [Object Model Diagram: Distribution Architecture in Default *]
I Fle Edit View Code Layout Tools Window Options Help

Distribution Architecture

SEF]
ER

PEm|iee &2 2c W R QAEEE X |[fHXraf% 58 |

JJL‘.:A o ¥ EIDefaullCnmpnnenl ;"DelaultCnnhg LI HJ@ {---}‘ = B ‘ Hﬁ x| i3] | = ‘

x

Entire Model View

25 3

-5

B

2}

[l 1

&

|

|

R

B Sleepytime
&1 Components
=-E1 Packages
= @ Default

ACtors
¥ abre
% acc
2 asp
% aUs:
2 avq
% avel
% cha
2 ECe
% pati
£ Phy

& B Classes
/8y ConstT.
=0 Object

B [l
-BE Dist
-BE Sub

=00 Sequer
=8 UseCa

B0 UL
B Use
57 Very

- Use Ca

‘H«|I9IIMHHM|EFIEEIH]II|7[

CommunicatingObject

<<CORBAlnterface>>

Client |*

1

Client_Side_Proxy

1

Server |1

System Broker Distribution
architecture

1

Server_Side_Proxy

1

TCP_IP_Stack

ObjectBroker

4

Bridge

e

"t Deliver A B DeliverA.] 1 Subsyste [Ul Use C. [Use Cas.. | &7 Wentikatar.. ' Distrioutio

100

Real-Time UML

[Fri, 2, Nov 2001 [12:00 AM

© Telelogic AB Te;e; og Ic

Safety and Reliability Model

* Safety and reliability model refers to the structures and policies in
place to ensure

— Safety

 Freedom from accidents or losses
— Reliability

« High MTBF

» Fault tolerance

* Safety and fault tolerance always require some level of redundancy

Safety and reliability of object models is described more

@
é completely in Doing Hard Time: Developing Real-Time
Systems with UML, Objects, Frameworks and Patterns

101 Real-Time UML T Telelogic

Safety and Reliability Architecture

A Rhapsody in C++ by |-Logix Inc. - [Object Model Diagram: Model1 *]
i: Fle Edt View Code Lavout Tools Window Options Help =
DEE 2@ 82 o Mo QAEEE X |THYrarFs 2o

A4 At g |DefauItCDmpDnem L”Defau\t(:onfig Lj EA {ed & 8|5 El 3:a)

; A,

Enfire Model Yiew ™ Waveferm Precessing Channel

=¥ EcG A
=01 Components
=01 Object Model Diagral
- €1 Packages [raiw] [reduced] [displayable]
= @ Default

R Actors

=B Classes
#-B Data_Redu
B Display_Sci
B Heart_Mod
B Heart_Num
B Heart_Rate
B Icon_View
B ECG
B Low_Pass_

[EF BY o0

Waveform_Sample Waveform_Sample WWavefarm_Sample

L]

Data_Reducer Display_Scaler Wavefarm_View

ECG Low_Pass_Filter

e | [el [[1 M

<=Suhsystemn==

Data Waveform Processing Channel
Acquisition 1
Module

General Properties

Fil

- 1 ECG Low_Pass_Filker : Data_Reducer : Display_Scaler Waveform_view 1 1
® AC Cor(” Over(” Loo Kl = 5 <
= . Shrééuns
~
ObjiectModelGe 01 Disthay
Class
Adareqat 1 1

Associatic
| ClassDiac Waveform_Sample 1| Yaveform_Sample Waveform_Sample

1

Complete [ra] [reduced] [displayahle]
Compost

Compost <=3uhsystemn>>
Depends
*| Inheritan
*| MWote

Package
= Dialogq Heart Numerics_Channel

Diagrams
Comme General;iGrs v QRS_Recognizer | PVC_Analyzer ST_Segment_Analyzer 3

< >

Locate | OK 1 Model *

|

Eel 1 Rl fatal . Coha

102 Real-Time UML Telelogic

© Telelogic AB

Concurrency Architecture

* Refers to
— Identification of task threads and their properties
— Mapping of passive classes to task threads
— ldentification of synchronization policies
— Task scheduling policies
* Unit of concurrency in UML is the «active» object

— «active» objects are added in architectural design to organize passive
objects into threads

— «active» objects contain passive semantic objects via composition and
delegate asynchronous messages to them

103 Real-Time UML T Telelogic

104

Task Identification

Task Identification Strategy

Description

Single event groups

for simple systems, you may define a thread for each event type

Event source

group all events from a single source together for a thread

Best for

Related information

For example, all numeric heart data SChedulabilty

e

Interface device

For example, a bus interface

Event properties

Events with the same period, or aperiodic events

Target object

For example, waveform queue or trend database

Safety Level

For example, BIT, redundant thread processing, watchdog tasks

Real-Time UML T Telelogic

Defining the Concurrency Model

;':1 Rhapsody by I-Logix Inc. - [Activity Diagram of : Default::Concurrency Design]

% File Edit View Code Layout Tools “Window Options Help — |E’|i|
DEHE 480 82 QAAMBIBLB(X * N owicong___~] |2 THY 88 |G| |
E |
[else]
? [remaining tasks?]
: Apply Task
Identification
2 Strategies REILH R
‘5 {for all identified tasks}
0 Add passive semantic
© objects into <<active>>
& objects via composition
= Construct
f <<active>> Test by scenario
ol object for each execution
Refine Refine scenarios
collaboration
Apply
schedulability
analysis
‘ [»[
ForHelp, press F1 T [Thu, 10, Aug 2000 [3.07 PM

105 Real-Time UML T Telelogic

Concurrency Model

* Active object is a stereotype of an object which owns the root of a

thread

* Active objects normally aggregate passive objects via composition

relations

* Standard icon is a class box with heavy line

106

Data Acq Thread

Sensor

Trend
Database

Display Thread

Numeric
View

Real-Time UML

5| Waveform
View

© Telelogic AB Te"e; ﬂg Ic

Active Classes

* In UML 1.x the unit of concurrency was called the Active Object,
shown with a thick border

Server

UML 1.x Active Object

* In UML 2.0 the notation has changed to double vertical lines, and is
called an Active Class

SERER

UML 2.0 Active Class

107 Real-Time UML T Telelogic

Basic Definitions

* Urgency
%@ Urgency refers to the
nearness of a deadline

* Criticality

Criticality refers to the

importance of the task’s
correct and timely completion

108 Real-Time UML T Telelogic

Basic Definitions

* Priority

Priority is a numeric value used

%Q to determine which task, of
the current ready-to-run task set

will execute preferentially

* Timeliness

Timeliness refers to the ability

@ of a task to predictably complete

its execution prior to the
elapse of its deadline

109 Real-Time UML T Telelogic

Basic Definitions

* Deadline

¢

* Schedulability

A deadline is a point in time
at which the completion of an
action becomes incorrect or irrelevant

@ A task set is schedulable if it can

be guaranteed that in all cases,
all deadlines will be met

110 Real-Time UML T Telelogic

Basic Definitions

* Arrival Pattern

The arrival pattern for a task

@ or triggering event is either time-based
(periodic) or event-based (aperiodic)

* Synchronization Pattern

Synchronization pattern refers to the

L how the tasks execute during
a rendezvous, e.g. synchronous,

balking, waiting, or timed

111 Real-Time UML T Telelogic

Basic Definitions

* Blocking Time

The blocking time for a task or

%@ action is the length of time it may
be kept from executing because a

lower priority task owns a required resource

* Execution Time

The execution time for a task or
action is the length of time it
requires to complete execution

112 Real-Time UML T Telelogic

Task Diagram

* A task diagram is a class diagram that shows only model elements
related to the concurrency model

— Active objects

— Semaphore objects

— Message and data queues

— Constraints and tagged values

* May use opaque or transparent interfaces

113 Real-Time UML T Telelogic

114

Interruptlevel = TRQ4
Period = 100us
D=acline = 1{00us

WorstCazse = 13us

\
\

AcguizitionlSR

= datalsr(}:void-=Interupt=>

\

Task Diagram

Prioritvy =13
Period = 10ms
Deadline = 10ms
WorstCaze = 6ms
Foot = executal)

]

Priority = 20
Perigd = 300ms
Deadline = 10{0ms
WorstCaze = 200ms
Foot = execut=()

/

Active Class
symbol

MeazurementThread

‘fizualizationThread

= execute):void

= exerute] J:void

e
P

Blocking Time = 2ms

Interrupt Routines
can (and should)
also be shown

eR=sources 1
DataBuffer
™~
e
l Blocking Time = 3ms
1
Mutex
Tag Values

Real-Time UML

© Telelogic AB TEJEJ og Ic

Task Performance Budgets

* The context defines the end-to-end performance requirements

* This determines the overall task budget

— Computation of total budget may not just be simply adding up the times
due to concurrency

* Individual operations and actions within tasks must be assigned
portions of the overall budget

— Action budgets should be checked during unit test
— Action budgets should take into account potential blocking

115 Real-Time UML T Telelogic

116

Required / Offered QoS

Sensaor

1

=] acquireData():void

[

Filter

Controller

[sendData (svoid

Transmitter

= packetizeData():void
= transmitPacket(): void

Real-Time UML

= filterDatal):void

© Telelogic AB Te"e; ﬂg Ic

Required / Offered QoS

OfferedQOS

EequiredQ0S "acquireData()" WorstCaseExecutionTime = Jms

WorstCaseExecutionTime = 3ms

!

\
\

OfferedQOS
WorstCaseExecutionTime = 2ms

N

AN Sensor . Filter
N, . . i .
1 B acquireDatal):void H fiterData):void
OfferedQOS A
WorstCaseExecutionTime = 12ms \ \
~. it A
™ Y N
x\ 5, 1
. Contraller FequiredQOS "filterData()"
T WorstCaseExecutionTime = 2ms
=] sendDatal) ivaid
)) = OfferedQOS

RequiredQOS "packetizeData() P 1 WorstCaseExecutionTime = lms

WorstCaseExecutionTime = 3ms

FequiredQ0S "transmitData()"
WorstCaseExecutionTime = 2ms

117

Transmitter

=] packetizeData():void
=] transmitPacket():void

™o

Real-Time UML

P

T~ OfferedQOS
WorstCaseExecutionTime = 2ms

© Telelogic AB Te"e; ﬂg Ic

Deployment Architecture

* Maps software components and subsystems to hardware
— Represents a device as a node
— lconic stereotypes are common
* |dentifies physical connections among devices
— May be buses, networks, serial lines, etc
* Two primary strategies
— Asymmetric
« Design-time mapping of software elements to HW
— Symmetric
* Dynamic run-time mapping of software elements to HW

118 Real-Time UML T Telelogic

119

Deployment Architecture

hapsody by I-Logix Inc. - [Deployment Diagram: 2 in Default]

— =] %]
42 File Edt View Code Layout Tools Window Options Help _|= ill
DA ' =B(&2|2: MraQaEaBEl X |THraf s 50|
Jk& o 8 e HIDeiaultCDmponent L"Defau\tConflg LI HJEB e | @ B | |”=4! | BB ‘
LY =
m]
& positionSensor
E /ﬁ\ sensorAZD Converter
i C,_:?i} A0
e —=—1010110 :
E TP 1010110 YmolorDZAConv motorDZAConverter
hard_disk 11010 ;
o1 i —
101011 1010110
DataAcquisitionSystem DataProcessingSystem
: ageProcessing
displaySys
pray=y Tepip displaySys
1 L1
etliernetius ’ TCP IP I l I
' ' ! memaryBoard otorcontrol = —
“ I I I
DA _uart
1010110 1010110
HardcopyDevice
primary_display
remote_display
RD_uart
1010110 1010110
keyboard
enableButton
N o

5% 2in Defaul(lé"mydep in |rCDnIn‘JIIer ,I:T:Eubsysle .IH'Subsysle I

For Help, press F1 I [[

Real-Time UML

[Thu, 18, et 2001 (102 PM

© Telelogic AB

Telelogic

Deployment via Class Diagram

o..1 wphysicals
Mis=sile

I 1

RadioLinkPart
RadioLinkPort

1 wSubsystems
theFireCantral:FireCantral Systerm
missileCmdPort |
1 i}
) * jtsMissil@Transaction;— — — — __ _ ___ ___ {mapped}
mechanical phy.smal A . | |
device device ObJGCT EadjustCourseg:void i itsTarget Target

\\ / \ e = priarity:int
y e Y ey = haslLock : boal;

4 \\ |
1 i1 wphysicale . |
\ / itsMissileRackMissileRack ! itsLaunchControlLaunchCe = A |
ManangementPort 1 1 | |
CantralPart flos| 1 itsTargetManagerT | |
| Hreleasedvaid |
4 wmechanicalx — |
LockingClamp rackPort LaunchCrmids | |
1 = wzlectronic: = lovs |
RackingElectronics:RackingElectronics Clas . "
MissileR DFmDn |
BselectMissilefmissileNurm:intvoid 1 itslaunchingSeguencerlLaunchings REETIE R TR
ﬁmoveTuLauncherO:\-‘Did_ ; = longitude:long double
wphiysicals EmDVETDRack(rackNl__lm:mt):vold M |atitude:long double
Mizsile I engageclamps g void EenableSequencefvoid = altitude:long double
HreleaseClampsdvoid BdisableSequencefvaid H time0Measurementlong double
EemoergencyStopdovoid
1
1
electronic 1 itsTrackManagerTrackianager

device

120 Real-Time UML Telelogic

© Telelogic AB

UNIFIED o
MODELING
LANGUAGE

The UML Profile for
Schedulability, Performance, and
Time

121 Real-Time UML T Telelogic

General Approach

* Use light-weight extensions to add standard modeling approaches
and elements

— Stereotypes, e.g. resources
— Tagged values, e.g. QoS properties

* Divide submission into sub-profiles to allow easier comprehension
and usage of relevant parts

122 Real-Time UML T Telelogic

RT Profile Structure

CommonBase

—

1]

Resource

a

Required by virtually

/ ALL real-time systems

Time Concurrency
AnalysisMethods Infrastructure
R .
Schedulability | ; ! RT_CORBA EnhancedTime

Analysis : !

, R iy S

o S A | |

Technology-specific
subprofiles
123 Real-Time UML

© Telelogic AB Te"e; Dgf c

SPT Profile

- Profiles
r_:l @ DoxygenProfile n @ SPT . . Tag : CRAtomic in CRAction
+-fg 5 ReporterPLUSProfile + % E:é‘:;;;‘jd'il Diagrams Generd | ~
¥ SoftwareProfile =
+ % SPT +-F9 Paprofile IE [CRAtamic L
+-fz'5 TestingProfile -1-B RTconcurrencyModeling Applicable to: | |
—]-«5% Stereotypes Type: Boolean =l e
—|-«5» CRAction belz | [= 2
- Iﬁ Tags < »
;jﬁ:ﬁ‘%;i= Lo @ CRAtomic | Locate| OK | |
Deadline = 100us 5% CRAsynch
Ik a S e =)-#5% CRConcurrent
'| - Iﬁ Tags
| @, CRMain
AcquisitionISR 5% CRContains

B datalsr{): voide<dntermpts> «5% CRDeferred

& read():void <<CRActions> +-«5% CRImmediate
/ «%% CRmsgl)
/ =&y Types
{» CRThreadingType
CRAtomic = True + ﬁ RTresourceModeling

+- [RTschedulabilityModeling
+- [RTtimeModeling

124 Real-Time UML T Telelogic

WaveformDisplaySystem «system»

«CRConcurrent» AN Exa m p I e

{ CRMain="main"; }
VS: VoltageSensor

«SATrigger»

SAOQOccurrence = (periodic, (10, 'ms'
{ (P (D void main() DataSample
«SAResponse»
{ SAPriority=10; 0 .. 20,000
SABIlocking=(1, 'ms");
SAWorstCase=(2, ‘'ms’); Raw: Waveform [
SAAbsDeadline=(10, 'ms"); } «SAAction» N\

dataSample get(wid);, 9] { SAWorstCase = (0.2,'ms'); }
wid (dataSample); ¢

«SAResource» «SAAction» AN
{ SAAccessControl = Prioritylnheritance; } { SAWorstCase = (0.2,'ms’); }

AN
«SATrigger» & WFController1: WFController1: «SATrigger»
{ SAQOccurrence = (periodic, | | WaveformScaler WaveformScaler | ¢ | { SAOccurrence = (periodic,
(50, 'ms")) } (50, 'ms)))
«SAResponse» «SAResponse»
{ SAPriority=100; { SAPriority=100;
SAWorstCase=(2.5, 'ms"); SAWorstCase=(2.5, 'ms);
SAAbsDeadline=(50, 'ms"); e e
(s Cooked1: Cooked?2: SAAbsDeadline=(30, ‘ms’); }
Waveform Waveform
«SATrigger» AN
«SATrigger» AN { SA’Oc?urrence = (periodic,
{ SAOccurrence = (periodic, (20, 'ms")) }
(20, 'ms)) }
«SAResponse»
«SAResponse» {S igrriiﬁty=z15;')
SAPriority=15; : . . . ocking=(1, 'ms');
{SABIockin)gl]=(1, 'ms); 0 W D—'S'fpl—a‘% W D_ns;pl_a\% ¢~ SAWorstCase=(5, 'ms’);
SAWorstCase=(5, 'ms’); avelormview avetormview SAAbsDeadline=(20, 'ms'); }
SAAbsDeadline=(20, 'ms"); }

125 Real-Time UML T Telelogic

sd EngineControl Scenario

) «PAContext»

‘DopplerLight Inaé'nfz_ed_e_d; smoother; ,Engm_e_cl_o.nn_o_llg ngine | | SheedView: | [Speedistory:
| | | | |
par | | | | |
| «PAOpenLoad» | |
acquire() | { PArespTime=(20, 'ms'); PApriority = 10; | |
PAoccurrence = ('periodic', 10, 'ms', 500, 'us'); }
\ | |
! !

setSpeed(s: real);

speed = fiIterDataﬁ)

«PAStep»
{ PArespTime= (‘ave', 500 'us');
PArespTime = ('max, 800, 'us'); }

0\ |

{ PArespTime= (‘ave', 2'ms'); }

I
| «PAStep» AN |
T { PArespTime= (‘ave', 2, 'ms’);
| | PArespTime = ('max, 4, 'ms'); } |
control() | | | | |
| | actual = getSpeq;d() |
| /érl\ | setSpeed(adjustment)
«PAStep» 1 ﬁ ~—

3

«PAStep»

{ PArespTime= (‘ave', 1, 'ms’); }

]

«PAStep»

{ PArespTime= (‘ave', 2'ms'); } Iﬁ
|
|

]

«PAOpenLoad»
{ PArespTime=(5, 'ms'); PApriority = 40;
PAoccurrence = ('periodic’, 100, 'ms', 500, 'us');

)

| «PAOpenLoad» | | |
{ PArespTime=(5, 'ms'); PApriority = 20;

| PAoccurrence = ('periodic', 100, 'ms', 500, 'us'); } | | |
| | | | | | |
. [[[[[[[

display() | | | | I
I I getSpeed()I I I |
| | | | > |

1 /£||\ 1 1 /
«PAStep» | «PAOpenLoad» |
{ PArespTime= (‘ave', 2'ms'); } | { PArespTime=(3, 'ms'); PApriority = 100; | |
PAoccurrence = (‘periodic’, 100, 'ms', 500, 'us'); }

| | | ! | |
update(] | | | | I

. getSpeed(I) . .
| /JE|J\ | | | ,

| | |
| |
| |

1Z0

NEedr=r1irmc UIviLL

Example

© Telelogic AB Te"e; ﬂg Ic

GIGO

* Select the appropriate stereotypes and tags of the schedulability
model to match the kind of analysis desired
— Global RMA
« Elements: active objects, resources
« Tags: execution time, deadline, period, priority, blocking time, priority ceiling
— Detailed RMA

« Elements: active objects, resources, actions, events, scenarios, scenario
steps, messages

« Tags: execution time, deadline, period, priority, blocking time, priority ceiling
— Simulation

» Depends on particular approach
— etc

127 Real-Time UML T Telelogic

Model Processing

Modeler Analysis Method Provider
User Model
QoS Properties Analytic Techinques
UML Modeling Tool Model Conversion Model Analysis Tool
— |

C, 1
Z —L + max 5+...+—B”‘1 <nl2"-1
" T T T

J 1 n—1

& Inverse Model
Conversion

Validated User Model Analysis Configuration
Paramers

Application System

Modeler

128 Real-Time UML T Telelogic

UNIFIED o

MODELING I
LANGUAGE
Harmony ™

Systems to Software
Process

129 Real-Time UML T Telelogic

Harmony Process Hybrid Spiral (General form)

/ Change Request \

.7 Harmony Hybrid Spiral Process \‘\

/ Systems \
! Engineering

-

. Requirements & Test Scenarios Test Scenarios
Requirements

Analysis System
Acceptance

Model Artifacts

Systems
Analysis &

Architecture
Internally

Validated System

Model Artifacts .
Implementation

Model Repository

Increment Review
(“Party’!)

- -
e e

GEWSIE

~
~

7

Incremental J/
Development Cycle .’

N e o o e =

130 Real-Time UML T Telelogic

Harmony-SW Process

g RSN Unit , o~ 7
e _-NTranslation' Testin Integration .° ~o ©
b - /7
-) [Testing L\ idation N
,/ -~ Detailed 7 Testi N AN
~ = N
/ ,/~~~.__Design % esting _N \
/ / ~~_ . -7 \ \
/ / s -
/ // , T \\ \\
N .\ \
N / Mechanisti N Increment Review \
S | Mechanstc _(Pary)
s | esign ; |'
~ . I
[, \ 4 Requirements / j
Q \ . Definition /
\ _ R y
\ N - p Iterative / /
\ \\ - So // //
\ - . ~~. Prototypes
AN “<_ Architectural ~.. el //
AN ~ . So - ,
N Design . ~ 7
N SSo g Object - 7
N \\ - // V2
AN S~ Analysis - -
~ ~~ _ - _
\\ Y~ _=- - //
~. e - = P

-
—
—

131 Real-Time UML - Telelogic

Microcycle Flow

Integrates architectural
pieces into prototype and
validates against prototype

translates model
intfo executable code and
constructs working

: . mission
architectural pieces of
prototype
Implementation
Increment Review Projec.f planning and
(“Party”) on-going assessment

and replanning

Analysis

Incremental

specifies a Development Cycle

particular “optimal”
solution

defines the properties of all
acceptable solutions

132 Real-Time UML T Telelogic

133

Harmony Incremental Spiral Workflows

Analysis

Prototype_Definition |<‘~i

FPrototype_Rens

| Ohject_Analysis |

E

v

Analysis_Model

Increment_Review "FartyFPhase")

Feleaze

Design

Architectural_Design |

2

Architecture

Mechanistic_Desian "'/'

A F F Y &
Schedule_Review Process_Review
& F
| Architecture_Review | Risk_Review
¥ 3 F Y

~

!

Testing

)

Collaboration_Design

Detailed_Design |</

T

Chject_Detailed_Design

| validated_Protatype

Integrated_Prototype

. e

YWalidation

Integration

1

Implementation

Compiled_Code

\

Translation

L

Tested_Model

Lnit_Test

Feviewed_Model

Model_Peer_Review

References

(For white papers see www.ilogix.com)

134

I-Logix
Dr. Douglass® Guided Tour Through the Wonderland of
3 A ™
Systems Engineering, UML ~ and Rhapsody” S
I . _ Real-Time UML, Second Edition
:LOng Developing Efficient Objects for Embedded Systems
1
JPIEALUMI, %28R
Wha Model Driven Architecture and Rhapsody AT7IHIRIL SR AT LIRAT)
By the Th=2R-8G5%
v thel ot WD wr
i Lo Bawce Seaxal o BRRUA-SAREAR
includ Methodolagist's Coraer
primaj
.
ol M Any Port in a Storm
.
* I-Logix
Abs =
MD; PIVIA LY AT LA BRI RHEL 7=
Inall Gro DODAF Architectures in UML and Rhapsody [ili>-UMLIZOL YTOR) DR
discipl] OM 12T -ZADHEEHEEEL? I5ZOMLERET?
spectfi] n¢ Bruce PowelDouglass [RHOIERNZ? 420EATITIMDTIEL S ?
gm; Chief Evangelist BSRIRIHIPEEBIIN DR
is :
How| e Hogiz
and plan
Therq unifi
o o What is DODAF?
. The DODAF Architzcmure Framework is a semantic
framework for daveloping, representing, and integrating
= Alp architectures in 2 consistent way for the Department of
COR Defense gpplications(1]. The DoDAF specification iz a
cech Ports ar recent upgrads to the 1997 C*ISR-AF specification. It
i long m) was concaived as away of providing a commen means to
!C‘EE' limited specify systems for the Department of Defense (DoD)) in
MeH design its maty facets and programs. The DODAF specification
;;‘_;{ encapsul defined architecturs to be:
fin code cos
eri POV An architecture description is a representation of a defined domain, as
[e encapsul of a current or future point in fime. in ferms of its component parts,
Sinef o what those parts do. how the parts relate to each other. and the rules
invol m‘i:j and constraints under which the parts function. What constitutes each
;amun of the elements of this definition depends on the degree of detail of
?:‘ Tome Sy interest, For example. domains can be at any level. from Dob as awhole
Late] encapsul down to individual functional areas or groups of functiondl oreas,
aski the notie Component parts can be amything from "U.S. Air Force” as a component
toge of Dgb. down to a "satellite ground station” as a component port of o
each| 4 communications netwark, or "workstation A" as a companent part of
The ¢ systom ™" What those pirts doi e be e el o thei high- level
A siruety operational concept or as specific as the lowest- level action they
Notice tf perform. How the parts relate to each other can be as general as how
speakiny organizations fit info a very high- level command structure or as specific
2?’;5; as what frequency one unit uses in communicating with anather. The

rules and constraints under which they work can be as general as high-
level doctrine or as specific as the e-mail standard they must use.

The term architectureis generally used bath fo refer to an architecture
description and an architecture implementation. Hereafter in this
document. the ferm architecture vill be used as a shortened reference

0ING HARD TIME

DEVELOPING REAL-TIME
Systems with UML, OsJECTs,
FRAMEWORKS, AND PATTERNS

BRUCE POWEL DOUGLASS

Fareword by Grady Booch

FAL-TIME DESIGN
PATTERNS

ROBUST SCALABLE ARCHITECTURE
FOR REAL-TIME SYSTEMS

BRUCE POWEL DOUGLASS

SO
JACTBSON
RUMBAUGH

~——semies eoiTons

EMBEDDED TECHNOLOGY ™ SERIES

Real-Time UML
Workshop for
Embedded
Systems

Bruce Powel Douglass

Real-Time UML

INFAL Tive UML
THIRD EDITION

ADVANCES IN THE UML FOR
REAL-TIME SYSTEMS

Telelogic

© Telelogic AB

