
Real-Time UML1 © Telelogic AB

RealReal--Time UMLTime UML
Bruce Powel Douglass, PhDBruce Powel Douglass, PhD

Chief EvangelistChief Evangelist

TelelogicTelelogic

www.ilogix.comwww.ilogix.com

groups.yahoo.com/group/RTgroups.yahoo.com/group/RT--UMLUML

Real-Time UML2 © Telelogic AB

What is UML?

• Unified Modeling Language
• Comprehensive full life-cycle 3rd Generation modeling language

– Standardized in 1997 by the OMG

– Created by a consortium of 12 companies from various domains

– I-Logix a key contributor to the UML including the definition of behavioral

modeling

• Incorporates state of the art Software and Systems A&D concepts
• Matches the growing complexity of real-time systems

– Large scale systems, Networking, Web enabling, Data management

• Extensible and configurable
• Unprecedented inter-disciplinary market penetration

– Used for both software and systems engineering

• UML 2.0 is latest version (2.1 is in the pipeline)

Real-Time UML3 © Telelogic AB

UML supports Key Technologies for Development

Iterative

Development

Visual

Modeling

Model

Execution

Model-Code

Associativity

Real-Time

Frameworks

Automated

Requirements-

Based Testing

Real-Time UML4 © Telelogic AB

UML 2 Diagrams

Communication

Diagrams Sequence

Diagrams

Interaction
Diagrams

Class
Diagrams

Deployment

Diagrams

Component

Diagrams

Object
Diagrams

Structural

Diagrams

Statechart

Diagrams

Use Case

Diagrams

Activity

Diagrams

Behavioral

Diagrams

Timing

Diagrams

Functional

Diagrams

Info Flow

Diagrams

Structure
Diagrams

Real-Time UML5 © Telelogic AB

How does UML apply to Real-Time?

• Real-Time UML is standard UML
– “UML is adequate for real-time systems” Grady Booch 1997

– “Although there have been a number of calls to extend UML for the real-time domain …

experience had proven this is not necessary.” Bran Selic, 1999 (Communications of the

ACM, Oct 1999)

• Real-time and embedded applications
– Special concerns about quality of service (QoS)

– Special concerns about low-level programming

– Special concerns about safety and reliability

• Real-Time UML is about applying the UML to meet the specialized
concerns of the real-time and embedded domains

Real-Time UML6 © Telelogic AB

How do we capture requirements How do we capture requirements

using UML?using UML?

Use Case ModelingUse Case Modeling

Real-Time UML7 © Telelogic AB

Building Management System

Clear Fire Alarm

Initiate Fire Alarm

Supervisor

Visitor

Building Management System

Basic Use Case Syntax

Use Case

Actor System Boundary

Association

{ shall alarm within 2

seconds of detection }

Constraint

Real-Time UML8 © Telelogic AB

A Use Case …

• Is a named operational
capability of a system

–Why the user interacts with

the system

• Returns a result visible to one or
more actors

• Does not reveal or imply internal
structure of the system

Real-Time UML9 © Telelogic AB

A Use Case Is Used to

• Capture requirements of a system
– Functional requirements

• What the system does

– Quality of Service (QoS)

• How well the system does it:

– Worst-case execution time

– Average execution time

– Throughput

– Predictability

– Capacity

– Safety

– Reliability

Functional

requirements

are modeled

as use cases,

sequence diagrams,

activity diagrams or

statecharts

QoS Requirements are

modeled as constraints

Real-Time UML10 © Telelogic AB

System Use Cases

Real-Time UML11 © Telelogic AB

Use Cases Are Not ..

• A functional decomposition model of the system internals – that’s HOW
– They do not capture HOW in any way

– They do not capture anything the Actor does outside of the System

– How do I capture HOW?

• Use Object Model Diagrams to capture Static Structure

• Use Sequence Diagrams and State Diagrams (or Activity

Diagrams) to capture Dynamic Behavior

Real-Time UML12 © Telelogic AB

Good Example: Cardionada

Real-Time UML13 © Telelogic AB

Bad Example: Cardionada-NADA

Wrong Actors

Assumes a design

Not primary capabilities

Real-Time UML14 © Telelogic AB

Things to avoid

• Single messages are not use cases!
– Use cases represent a large number of different scenarios

– Each scenario has many (possibly hundreds) of messages

• Low-level interfaces are not use cases
– Low-level interfaces are means to realize use cases

– LLI’s are subsumed within actual use cases

– A use case should map to a reason for the user to interact with

the system, not the means by which it occurs

Real-Time UML15 © Telelogic AB

Detailing Use Cases

• By operational example
– Use scenarios captured via sequence diagrams

• Each scenario capture a specific path through the use case

– Partially constructive

– Infinite set, so you must select which are interestingly different

– Non-technical users can understand scenarios

• By specification
– Use an informal (e.g. English) and/or formal (e.g. statechart) to

represent all possible paths

– Fully constructive

– Non-technical readers might not understand formal specs

Real-Time UML16 © Telelogic AB

Use Case Description

Real-Time UML17 © Telelogic AB

Detailing Use Cases: Scenarios

• A typical system has one dozen to a few dozen use case
• Each use case typically has a few to several dozen scenarios of
interest

• Scenarios capture a specific actor-system interaction
– protocols of interaction

– permitted sequences of

message flow

– collaboration of structural elements

– show typical or exceptional paths through the use case

Real-Time UML18 © Telelogic AB

Example: Use Case Sequence Diagram

Real-Time UML19 © Telelogic AB

Detailing Use Cases: Statecharts

Real-Time UML20 © Telelogic AB

Detailing Use Cases: Statecharts

Alarm on

Critical Event

Real-Time UML21 © Telelogic AB

HowHow do we describe do we describe

structure using UML?structure using UML?

Real-Time UML22 © Telelogic AB

Objects, Classes and Interfaces

• An object is a run-time entity that occupies memory at some specific
point in time

– Has behavior (methods)

– Has data (attributes)

• A class is a design-time specification that defines the structure and
behavior for a set of objects to be created at run-time.

– Specifies behavior implementation (methods)

– Specifies data (attributes)

• An interface is a design time concept that specifies the messages a
class receives (“provided”) or uses (“required”)

– Specifies behavior only (operation implementation)

– May have virtual attributes (no implementation)

– May have a protocol state machine (no actions)

Real-Time UML23 © Telelogic AB

• An object is one of the common building blocks in a UML model.
– Software: It can represent a system, a subsystem or a specific software

element in a concrete programming language.

– Systems: It can represent a real-world system, subsystem, or element

• Several definitions are available:
– An object is a real-world or conceptual thing that has autonomy

– An object is a cohesive entity consisting of data and the operations that act

on those data

– An object is a thing that has an interface that enforces protection of the

encapsulation of its internal structure

What is an Object ?

Real-Time UML24 © Telelogic AB

Objects can be …

•Software things
– Occupy memory at some point in time

– E.g. CustomerRecord, ECGSample, TextDisplayControl

•Electronic things
– Occupy physical space at some point in time

– E.g. Thermometer, LCDDisplay, MotionSensor, DCMotor

•Mechanical things
– Occupy physical space at some point in time

– E.g. WingSurface, Gear, Door, HydraulicPress

•Chemical things
– Occupy physical space at some point in time

– E.g. Battery, GasMixture, Halothane

•System things
– Occupy space at some point in time

– E.g. PowerSubsystem, RobotArm, Space Shuttle

Real-Time UML25 © Telelogic AB

• A Class is the definition or specification of an object

• An object is an instance of a class
• An object has the attributes and behaviours defined by its class
• It is common to have many instances of a class at the same time

Human (class)

Sam(Object)

Phil (Object) Lauren (Object)

Classes

is a instance of

is an instance of

is an instance of

Real-Time UML26 © Telelogic AB

Class Diagram

Real-Time UML27 © Telelogic AB

Structural Diagrams

• Diagrams serve many purposes
– System model-capture & specification

– View aspects of system design

– Provide basis for communication and review

• Diagrams bring 2 things to the design process
– Represent different aspects of design, e.g.

• Functional

• Structural

• Behavioral

• Quality of Service

– Show aspects at different levels of abstraction

• System

• Subsystem

• Component

• “Primitive” class

Real-Time UML28 © Telelogic AB

Interfaces

• UML interfaces specify operations or event receptions
• UML Interfaces have no implementation

– No methods

– No attributes

• Classes realize an interface by
– providing a method (implementation) of an operation or

– specifying an event reception on a state machine

• A class that realizes an interface is said to be compliant with that
interface

– Classes may realize any number of interfaces

– Interfaces may be realized by any number of classes

Real-Time UML29 © Telelogic AB

Interfaces

Real-Time UML30 © Telelogic AB

• Relationships allow objects to communicate at run-time
• Objects may use the facilities of other objects with an association
• There are two specialized forms of association:

– Objects may contain other objects with an aggregation

– Objects may strongly aggregate others via composition

• Classes may derive attributes and behaviours from other classes
with a generalization

• Classes may depend on others via a dependency

Relationships

Real-Time UML31 © Telelogic AB

• Associations allow instances of classes to communicate at run-time
– Instances of associations are called links

– Links may come and go during execution

• Denotes one object using the facilities of another
• Lifecycles of the objects are independent
• Allows objects to provide services to many others

Associations

Real-Time UML32 © Telelogic AB

• Associations may have labels
– This is the “name” of the association

• Associations may have role names
– Identifies the role of the object in the association

• Associations may indicate multiplicity
– Identifies the number of instances of the class that participate in the
association

• N

• *

• 1..[n | *]

• Associations may indicate navigation with an open arrowhead

– Unadorned associations are assumed to be bi-directional

– Most associations are unidirectional

Associations

Real-Time UML33 © Telelogic AB

• Indicated by a hollow diamond
• “Whole-part” relationship

– Denotes one object logically or physically contains another

• “Weaker” form of aggregation. Nothing is implied about

– Navigation

– Ownership

– Lifetimes of participating objects

Aggregation

Real-Time UML34 © Telelogic AB

• Indicated by containment or a filled aggregation diamond
• Whole both creates and destroys part objects

• Composite is a higher level abstraction than the parts
– Allows the class model to be viewed and

manipulated at many levels of abstraction

• “Stronger” form of aggregation
– Implies a multiplicity of no more than one

with the whole

• Forms a tree with its parts

Y

X

X

Composition

Real-Time UML35 © Telelogic AB

Composition Example

Keypad Display

System

FrontPanel

Button LED

Acquisition Filter Measurement

AcquisitionSubsystem

1 1

1 1

8 4

11 1

11

System

:AcquisitionSubsystem
1

:FrontPanel
1

AcquisitionSubsystem

:Acquisition
1

:Filter
1

:Measurement
1

1

1

FrontPanel

:Keypad
1

:Display
1

Keypad

:Button
8

:LED
4

Two ways
to show

composition

Real-Time UML36 © Telelogic AB

Relationships

Real-Time UML37 © Telelogic AB

Dependencies

• A dependency can be used when a
class has no direct relation to

another class, but depends on it in

some way.

– A Dependency stereotype (<<>>)

details how one item is

dependent on the other

– One class may depend on

another to build an executable

from code with a <<usage>>

dependency

– A Use Case may depend on a

class that realizes its required

functionality

Measurement ErrorManager

LinkList

T

CollectionLibrary

Iterator

 <<Usage>>

 <<Friend>>

 <<Bind>>

Real-Time UML38 © Telelogic AB

Advanced Structural ConceptsAdvanced Structural Concepts

Real-Time UML39 © Telelogic AB

Advanced Structural Concepts

• Flows
• Structure Classes
• Ports

Real-Time UML40 © Telelogic AB

Information Flows

• Information flows are an abstract view of collaboration

– Information items represent data

• Similar to data flow diagrams
– Non-constructive

– No sequence is shown

• Information Flows are details with data elements known as Flow

Items

– Flow Items can be primitive types, records containing other items, or

even classes

• Operations and event receptions on the target class will realize
information flow

– Information flow items will be parameters or return values of the

operations

Real-Time UML41 © Telelogic AB

Item Flows

Real-Time UML42 © Telelogic AB

Structured Classes

•A structured class is a class that is composed of parts

– The structured class is responsible for the creation and destruction of its

parts

– The structured class “owns” the parts via composition

•A part is an object role that executes in the context of the structured

class

– Parts are typed by classes

•Parts are connected via connections

– Connections are contextualized links

– The structured class links together the parts as necessary

Real-Time UML43 © Telelogic AB

Structured Classes

• PRIMARY USE: show systems at different levels of abstraction
– Composite is at a higher level of abstraction than the part (e.g. system and
subsystem)

– Composite achieves its behavioral goals primarily through delegation

• Additional use: Populate simple classes into «active» classes for
concurrency

• Additional use: Use composites to aid in system boot and object construction

Real-Time UML44 © Telelogic AB

Structured Class

Real-Time UML45 © Telelogic AB

Parts and Ports

• Ports are “named connection points”

• Ports allow a part to provide an interface across the boundary of its
enclosing structured class without revealing to the client of the service

the internal structure of the structured class

– Client “talks to” the port without internal knowledge

• Ports are “typed by” their interfaces
– Provided interfaces

– Required Interfaces

Real-Time UML46 © Telelogic AB

Parts and Ports

Composite class

must delegate the

service request off

to the correct part

specified in a Ventilator

method or in its

statechart

Ports allow the delegation

behavior to be explicitly

modeled. However, the

client only knows that

it talks to the port, not

which internal part.

Real-Time UML47 © Telelogic AB

Interfaces with Ports

• Ports are typed by their interfaces
– Provided interfaces specify services offered

– Required interfaces specify services needed

– A port may have either or both

Real-Time UML48 © Telelogic AB

Port Example

Real-Time UML49 © Telelogic AB

How do we How do we

describe behavior?describe behavior?

Real-Time UML50 © Telelogic AB

Sequence Diagrams

• Sequence diagrams show the behavior of a group of instances (e.g.
objects) over time. Instances may be

– Objects (most common)

– Use case instance

– System

– Subsystem

– Actor

• Useful for
– Capturing typical or exceptional interactions for requirements

– Understanding collaborative behavior

– Testing collaborative behavior

Real-Time UML51 © Telelogic AB

Sequence diagram : Basic Syntax

Real-Time UML52 © Telelogic AB

Special Case: Execution Occurrence

• Execution occurrences are useful for the sequential

message exchanges

Execution
occurrence

Return

Real-Time UML53 © Telelogic AB

Deriving Test Vectors from Scenarios

• A scenario is an example execution of a system
• A test vector is an example execution of a system with a known
expected result

• Scenario � Test Vector

– Capture preconditions

– Determine test procedure

• Identify causal messages and events

• Instrument test fixtures to insert causal messages

– Remove optional or “incidental” messages

– Define pass/fail criteria

• Identify effect messages / states

• Postconditions

• Required QoS

Real-Time UML54 © Telelogic AB

Stimulating the System

Test Environment or

user plays the

“Collaboration

Boundary”

Test Environment

binds actual instances

to instance parameters

as necessary

Test Environment binds

actual values to passed

operation parameters as

necessary

Real-Time UML55 © Telelogic AB

Decomposing Sequence Diagrams

•Sequence diagrams suffer from scalability problems when there are
many

– Lifelines

– Messages

•UML 2 provides the ability to decompose sequence diagrams both
vertically and horizontally

– Lifelines may be decomposed into interactions (separate sequence

diagrams

– Interaction fragments may be referenced on another diagram

Real-Time UML56 © Telelogic AB

Sequence Diagrams

Real-Time UML57 © Telelogic AB

Interaction Operators

Real-Time UML58 © Telelogic AB

UML 2.0 Timing Diagrams

sd Pacing

Time

:A
tr
ia
l
M
o
d
e
l

Idle

Refractory

Sensing

Pacing

To Inhibited

A Sense

tm(Sense_tm)

tm(Pulse_tm)

tm(Ref Time)

lifeline

state or value

tick mark values
0 2010

timing ruler

{ 20 +/- 0.5ms }

event or stimulus

{ sense_tm +/- 0.5ms }

timing constraint

timing constraint

Real-Time UML59 © Telelogic AB

UML 2.0 Timing Diagrams

sd Communicating

Time

Sending::Low

Sending::High

Receving::Low

Receiving::High

Sending

Receiving

Idle
C
o
il
 D
ri
v
e
r

T
ra
n
s
c
e
iv
e
r

transmit(value)

Tristate

M
o
n
it
o
r Initializing

Acquiring

Reporting

Idle

label1

send(value)

tm(bitTime)

{1 ms +/- 0.2ms}

{5 ms +/- 0.2ms}

evDone

lifeline separator

label

label1

send(value)

event or stimulus

Real-Time UML60 © Telelogic AB

State Behavior

• Useful when object
– Exhibits discontinuous modes of behaviour

– Waits for and responds to incoming events

• Sensor example
– In Start up

• It must be configured before it can be used

• It may be turned off

– When it’s ready

• It rejects requests for data (data not yet available)

• It can go acquire data upon request

– Once it has data

• It may be asked for the sensed value (data has been acquired)

• It may get data periodically

Real-Time UML61 © Telelogic AB

State Machine Execution

Real-Time UML62 © Telelogic AB

• Created by professor David Harel of I-Logix in late 1980s
• Statecharts were inserted into the UML by Eran Gery and David
Harel of I-Logix

• Supports
– Nested states

– Actions

– Guards

– History

• Advanced features
– And-states

– Broadcast transitions

– Orthogonal regions

Statecharts

Real-Time UML63 © Telelogic AB

�What’s a state?

�What’s a transition?

A state is a distinguishable, disjoint,

orthogonal condition of existence

of an object that persists for a

significant period of time

A transition is a response

to an event of interest moving

the object from a state

to a state.

Statecharts

Real-Time UML64 © Telelogic AB

�What’s an action?

�What’s the order of action execution?

An action is a run-to-completion

behavior. The object will not accept

or process any new events until

the actions associated with the

current event are complete.

(1)exit actions of current state

(2) transition actions

(3) entry actions of next state

Statecharts

Real-Time UML65 © Telelogic AB

UML State Models

• Specifies the behaviour for reactive classes
• Not all classes have state behaviour
• Notation and semantics are Harel Statecharts

– Nested States

– Actions on

• Transitions

• State Entry

• State Exit

Actions are run-to-

completion behaviours

Real-Time UML66 © Telelogic AB

Basic Statechart Syntax

B

evX(int r)[r < 0] / f(r)A

entry / g(x), h(y)

exit / m(a), n(b)

ev3 / p(x,y), q(z)

Guard

Action List

State State name

Entry actions

Exit actions

Internal Transitions
(“Reactions in State”)

Event parameters

Event name

Real-Time UML67 © Telelogic AB

Basic Syntax Example

Condition Connector

Trigger

Guard

Actions

Transition Syntax:
trigger [guard] / action list

Default Transition

Real-Time UML68 © Telelogic AB

Types of Events

• UML defines 4 kinds of events
– Signal Event

• Asynchronous signal received e.g. evStart

– Call Event

• operation call received e.g. opCall(a,b,c)

– Change Event

• change in value occurred

– Time Event

• Absolute time arrived

• Relative time elapsed e.g. tm(PulseWidthTime)

Real-Time UML69 © Telelogic AB

Handling Transitions

• If an object is in a state S that responds to a named event evX, then it

will act upon that event

• It will transition to the specified state, if the event triggers a named

transition and the guard (if any) on that transition evaluates to TRUE. It

will execute any actions associated with that transition

• Handle the event without changing state if the event triggers a named

reaction and execute all the list of actions associated with that reaction

Real-Time UML70 © Telelogic AB

• A guard is some condition that must be met for the transition to be taken
• Guards are evaluated prior to the execution of any action.

• Guards can be:
– Variable range specification ex: [cost<50]

– Concurrent state machine is in some state [IS_IN(fault)]

– Some other constraint (preconditional invariant) must be met

Transitions: Guards

Real-Time UML71 © Telelogic AB

Actions

• Actions are run to completion
– Normally actions take a short period of time to perform

– They may be interrupted by another thread execution, but that object

will complete its action list before doing anything else

• Actions are implemented via
– An object’s operations

– Externally available functions

• They may occur when
– A transition is taken

– A reaction occurs

– A state is entered

– A state is exited

Real-Time UML72 © Telelogic AB

Null-triggered Transitions

Null-triggered transitions trigger immediately upon completion
of any actions-on-entry. If the guard ‘isDataReady()’ evaluates
to FALSE, then the ONLY WAY it will ever be evaluated again is
if event evPoll occurs, retriggering the null-triggered transition.

Real-Time UML73 © Telelogic AB

Timeouts

• When an object enters a state, any Timeout from that state are

started

• When a Timeout Expires, the State machine receives the expiration

as an event

• When an object leaves a state, any timeout that was started on entry

to that state are cancelled

• Only one timeout can be used per state, nested states can be used if
several timeouts are needed

Real-Time UML74 © Telelogic AB

Timeouts

• Timeout Example:

Real-Time UML75 © Telelogic AB

Statechart Syntax – OR States

OR States

OR States

OR States

Real-Time UML76 © Telelogic AB

OR-States

• An object must always be in exactly one OR-state at a given level of

abstraction.

– The object must be in either off or armed – it cannot be in more than one or

none

– If the current state is armed, then the object must ALSO be in either exiting or

active

– Note, if IS_IN(detecting) returns TRUE, then IS_IN(active) returns TRUE and

IS_IN(exiting) returns FALSE

Real-Time UML77 © Telelogic AB

Statechart Syntax – Nested States

Nested States Composite State

Real-Time UML78 © Telelogic AB

Order of Nested Actions

• Execute from outermost - in on entry
• Execute from innermost - out on exit

U entry: f()

exit: g(a,b)

U1
entry: x(c)

exit: y()
A

first f() then x(c)

first y() then g(a,b)

Real-Time UML79 © Telelogic AB

active

codeEntryarmingDisarmingReprogramming

active

currentCode

different correct

notEntered

enteringCode

reprogramming

waitOldCode

waitNewCode

idle

C

C

C

tm(3000) tm(3000)

tm(5000)

evKeyOff

evKey/

newCode = params->n;

count=1;

[isCodeCorrect()]

[isCodeEntered()]

[else]

evKey/

newCode = (10 * newCode) + params->n;

count++;

[IS_IN(correct)]

[else]

evKeyOn

evKeyOff[IS_IN(correct)]/

itsAlarmController->GEN(evDisarm);

evKeyOff

evKeyOn[IS_IN(different)]/

changeCode();

evKeyOn
[IS_IN(correct)]/

itsAlarmController->GEN(evTemporise);

[IS_IN(notEntered)]

tm(10000)

Statechart Syntax – AND States

Orthogonal Component Separator

AND States

AND state name

Real-Time UML80 © Telelogic AB

AND-States

• When a state has multiple AND-states, the object must be in exactly one

substate of each active AND-State at the same time

• AND-states are logically concurrent
– All active AND-states receive their own copy of any event the object receives

and independently acts on it or discards it

– Cannot tell in principle which and-state will execute the same event first

– Not necessarily concurrent in the thread or task sense

– NOTE: UML uses active objects as the primary means of modeling

concurrency

– AND-states may be implemented as concurrent threads, but that is not the

only correct implementation strategy

Real-Time UML81 © Telelogic AB

AND-State Communication

• AND-states may communicate via
– Broadcast events

• All active AND-states receive their own copy of each received event and are

free to act on it or discard it

– Propagated events

• A transition in one AND-state can send an event that affects another

– Guards

• [IS_IN(state)] uses the substate of an AND-state in a guard

– Attributes

• Since the AND-states are of the same object, they “see” all the attributes of

the object

Real-Time UML82 © Telelogic AB

UML Pseudostates

T

C

H*

or

Symbol Symbol Name

or
HBranch Pseudostate (type

of junction pseudostate)

Terminal or Final Pseudostate

Initial or Default Pseudostate

Fork Pseudostate

Join Pseudostate

Junction Pseudostate

(Shallow) History Pseudostate

(Deep) History Pseudostate

Choice Point Pseudostate

Merge Junction Pseudostate

(type of junction pseudostate)

[g]

[g]

Symbol Symbol Name

Entry Point Pseudostate

label

label

Exit Point Pseudostate

Real-Time UML83 © Telelogic AB

emptying>empty

active>

lower

upper

active>

lowerFull>fillingLower>

fillingUpper> upperFull>

pause

H

H

EMPTY

EMPTY

T

tm(1000)

tm(5000)

evFull

evResumeevPause

evStart
evEmpty

tm(50)

evAbor t

evTer mi nat e

Statechart Syntax – Pseudostates

Fork

Junction

Join

Diagram
(must be a pair)

Termination
(Final state)

Terminator
(calls destructor)

History

Real-Time UML84 © Telelogic AB

Statecharts

Starting

/setSecondary(Red);
setPrimary(Red)

The startup time
ensures that all traffic is

stopped before a mode
change, for traffic

safety

Use Case: Fixed

Cycle Mode

ManagingTraffic_SIM ManagingTraffic_SEQ

tm(startupTime)

[turnModeIs(SIM)]
[turnModeIs(SEQ)]

Real-Time UML85 © Telelogic AB

Submachines: Parent

Entry point

Submachine
reference

Exit point

Real-Time UML86 © Telelogic AB

Submachines: Child

Submachine

Conditional Pseudostate

Real-Time UML87 © Telelogic AB

Poorly Formed Statecharts

e2

e3

Must be same event

Overlapping
guards

No Default
State

Race condition

Use before
initialization

Conflicting
transitions

Real-Time UML88 © Telelogic AB

Inherited State Behaviour

• Two approaches to inheritance for generalization of reactive classes

– Reuse (i.e. inherit) statecharts of parent

– Use custom statecharts for each subclass

• Reuse of statecharts allows

– Specialization of existing behaviours

– Addition of new states and transitions

– Makes automatic code generation of reactive classes efficient in

the presence of class generalization

Real-Time UML89 © Telelogic AB

Example: Generalization

Real-Time UML90 © Telelogic AB

Activity Diagrams

• Change in 2.0 to be based on token flow semantics

• Used when the primary means of transitioning from one state to another
is upon completion of the previous activity not reception of an event

– An activity diagram can be assigned to either a class, use case or an

operation.

– Useful for describing algorithms

• Each activity has a set of pins

– Input pins bind input parameters to “local variables”

– Output pins bind output parameters to “output variables”

– An activity begins when input data appears on all input pins

– When an activity completes, there is data on all the output pins

– Activities are no longer triggered by events

Real-Time UML91 © Telelogic AB

Activity Diagram : Basic Syntax

Default Transition

Action state

Transition

Guard

Conditional
pseudostate

Termination Connector

Real-Time UML92 © Telelogic AB

Activity Diagram : Advanced Syntax

Pin

Fork

Interrupting
Edge

Event
Reception

Object
Flow State

Activity Block

Join

Interruptible
Region

Real-Time UML93 © Telelogic AB

Activity Diagram: Partitions (Swim Lanes)

Partition

Used primarily to

allocate actions and

activities to objects

Real-Time UML94 © Telelogic AB

ArchitectureArchitecture

Real-Time UML95 © Telelogic AB

Physical Architectural Views

Subsystem and

Component View

Co
nc
ur
re
nc
y
an
d

Re
so
ur
ce
 V
ie
w

D
istribution V

iew

Sa
fe
ty
 a
nd

R
el
ia
bi
lit
y
V
ie
wD

eploym
ent

V
iew

Real-Time UML96 © Telelogic AB

Physical Architectural Views

• Construct architectural design models
– Subsystem Model

– Concurrency Model

– Distribution Model

– Safety and Reliability Model

– Deployment Model

• Capture with
– Class Diagrams

– Package Diagrams

– Subsystem Diagrams

– Task Diagrams

– Deployment Diagrams

Real-Time UML97 © Telelogic AB

Subsystem Architecture

Real-Time UML98 © Telelogic AB

Subsystem and Component View

• A component
– is the basic reusable element of software

– organizes objects together into cohesive run-time units that are replaced

together.

– provides language-independent opaque interfaces

– a metasubtype of (structured) Class

• A subsystem
– is a large object that provides opaque interfaces to its clients and

achieves its functionality through delegation to objects that it owns

internally

– contains components and objects on the basis of common run-time

functional purpose

– a metasubtype of Component

Real-Time UML99 © Telelogic AB

Distribution Architecture

• Distribution model refers to
– Policies for distribution objects among multiple processors and

communication links, e.g.

• Asymmetric distribution (dedicated links to objects with a priori known location)

• Publish-Subscribe

• CORBA and Broker symmetric distribution

– Policies for managing communication links

• Communication protocols

• Communication quality of service management

Real-Time UML100 © Telelogic AB

Distribution Architecture

Real-Time UML101 © Telelogic AB

Safety and Reliability Model

• Safety and reliability model refers to the structures and policies in
place to ensure

– Safety

• Freedom from accidents or losses

– Reliability

• High MTBF

• Fault tolerance

• Safety and fault tolerance always require some level of redundancy

Safety and reliability of object models is described more

completely in Doing Hard Time: Developing Real-Time

Systems with UML, Objects, Frameworks and Patterns

Real-Time UML102 © Telelogic AB

Safety and Reliability Architecture

Real-Time UML103 © Telelogic AB

Concurrency Architecture

• Refers to
– Identification of task threads and their properties

– Mapping of passive classes to task threads

– Identification of synchronization policies

– Task scheduling policies

• Unit of concurrency in UML is the «active» object
– «active» objects are added in architectural design to organize passive

objects into threads

– «active» objects contain passive semantic objects via composition and

delegate asynchronous messages to them

Real-Time UML104 © Telelogic AB

Task Identification

Events with the same period, or aperiodic eventsEvent properties

For example, waveform queue or trend databaseTarget object

For example, BIT, redundant thread processing, watchdog tasksSafety Level

For example, a bus interfaceInterface device

For example, all numeric heart dataRelated information

group all events from a single source together for a threadEvent source

for simple systems, you may define a thread for each event typeSingle event groups

DescriptionTask Identification Strategy

Best for
schedulabilty

Real-Time UML105 © Telelogic AB

Defining the Concurrency Model

Real-Time UML106 © Telelogic AB

Data Acq Thread Display Thread

Concurrency Model

• Active object is a stereotype of an object which owns the root of a
thread

• Active objects normally aggregate passive objects via composition
relations

• Standard icon is a class box with heavy line

Queue

Sensor

Waveform

View
Trend

Database

Numeric

View

Real-Time UML107 © Telelogic AB

Active Classes

• In UML 1.x the unit of concurrency was called the Active Object,
shown with a thick border

• In UML 2.0 the notation has changed to double vertical lines, and is
called an Active Class

UML 1.x Active Object

UML 2.0 Active Class

Real-Time UML108 © Telelogic AB

Basic Definitions

• Urgency

• Criticality

Urgency refers to the

nearness of a deadline

Criticality refers to the

importance of the task’s

correct and timely completion

Real-Time UML109 © Telelogic AB

Basic Definitions

• Priority

• Timeliness

Priority is a numeric value used

to determine which task, of

the current ready-to-run task set

will execute preferentially

Timeliness refers to the ability

of a task to predictably complete

its execution prior to the

elapse of its deadline

Real-Time UML110 © Telelogic AB

Basic Definitions

• Deadline

• Schedulability

A deadline is a point in time

at which the completion of an

action becomes incorrect or irrelevant

A task set is schedulable if it can

be guaranteed that in all cases,

all deadlines will be met

Real-Time UML111 © Telelogic AB

Basic Definitions

• Arrival Pattern

• Synchronization Pattern

The arrival pattern for a task

or triggering event is either time-based

(periodic) or event-based (aperiodic)

Synchronization pattern refers to the

how the tasks execute during

a rendezvous, e.g. synchronous,

balking, waiting, or timed

Real-Time UML112 © Telelogic AB

Basic Definitions

• Blocking Time

• Execution Time

The blocking time for a task or

action is the length of time it may

be kept from executing because a

lower priority task owns a required resource

The execution time for a task or

action is the length of time it

requires to complete execution

Real-Time UML113 © Telelogic AB

Task Diagram

• A task diagram is a class diagram that shows only model elements
related to the concurrency model

– Active objects

– Semaphore objects

– Message and data queues

– Constraints and tagged values

• May use opaque or transparent interfaces

Real-Time UML114 © Telelogic AB

Task Diagram

Tag Values

Active Class
symbol

Interrupt Routines
can (and should)
also be shown

Real-Time UML115 © Telelogic AB

Task Performance Budgets

• The context defines the end-to-end performance requirements
• This determines the overall task budget

– Computation of total budget may not just be simply adding up the times

due to concurrency

• Individual operations and actions within tasks must be assigned
portions of the overall budget

– Action budgets should be checked during unit test

– Action budgets should take into account potential blocking

Real-Time UML116 © Telelogic AB

Required / Offered QoS

Real-Time UML117 © Telelogic AB

Required / Offered QoS

Real-Time UML118 © Telelogic AB

Deployment Architecture

• Maps software components and subsystems to hardware
– Represents a device as a node

– Iconic stereotypes are common

• Identifies physical connections among devices
– May be buses, networks, serial lines, etc

• Two primary strategies
– Asymmetric

• Design-time mapping of software elements to HW

– Symmetric

• Dynamic run-time mapping of software elements to HW

Real-Time UML119 © Telelogic AB

Deployment Architecture

Real-Time UML120 © Telelogic AB

Deployment via Class Diagram

Real-Time UML121 © Telelogic AB

The UML Profile for The UML Profile for

Schedulability, Performance, and Schedulability, Performance, and

TimeTime

Real-Time UML122 © Telelogic AB

General Approach

• Use light-weight extensions to add standard modeling approaches
and elements

– Stereotypes, e.g. resources

– Tagged values, e.g. QoS properties

• Divide submission into sub-profiles to allow easier comprehension
and usage of relevant parts

Real-Time UML123 © Telelogic AB

RT Profile Structure

CommonBase

Infrastructure

EnhancedTimeRT_CORBA

Resource

Time Concurrency

AnalysisMethods

Schedulability
Analysis

Required by virtually

ALL real-time systems

Technology-specific

subprofiles

Real-Time UML124 © Telelogic AB

SPT Profile

Real-Time UML125 © Telelogic AB

Example
VS: VoltageSensor

Cooked1:

Waveform

Cooked2:

Waveform

Raw: Waveform

WFController1:

WaveformScaler

WFController1:

WaveformScaler

Display1:

WaveformView

Display1:

WaveformView

DataSample

0 .. 20,000

«SATrigger»

{ SAOccurrence = (periodic,

(50, 'ms')) }

«SAResponse»

{ SAPriority=100;

SAWorstCase=(2.5, 'ms');

SAAbsDeadline=(50, 'ms'); }

«SAResource»

{ SAAccessControl = PriorityInheritance; }

WaveformDisplaySystem «system»

void main()

«CRConcurrent»

{ CRMain="main"; }

«SATrigger»

{ SAOccurrence = (periodic, (10, 'ms')) }

«SAResponse»

{ SAPriority=10;

SABlocking=(1, 'ms');

SAWorstCase=(2, 'ms');

SAAbsDeadline=(10, 'ms'); }

«SATrigger»

{ SAOccurrence = (periodic,

(20, 'ms')) }

«SAResponse»

{ SAPriority=15;

SABlocking=(1, 'ms');

SAWorstCase=(5, 'ms');

SAAbsDeadline=(20, 'ms'); }

«SATrigger»

{ SAOccurrence = (periodic,

(50, 'ms')) }

«SAResponse»

{ SAPriority=100;

SAWorstCase=(2.5, 'ms');

SAAbsDeadline=(50, 'ms'); }

dataSample get(void);

void (dataSample);

«SAAction»

{ SAWorstCase = (0.2,'ms'); }

«SAAction»

{ SAWorstCase = (0.2,'ms'); }

«SATrigger»

{ SAOccurrence = (periodic,

(20, 'ms')) }

«SAResponse»

{ SAPriority=15;

SABlocking=(1, 'ms');

SAWorstCase=(5, 'ms');

SAAbsDeadline=(20, 'ms'); }

Real-Time UML126 © Telelogic AB

Example
sd EngineControl Scenario «PAContext»

Note; in this RTOS, higher values of the priority

property have low er execution priority
acquire()

:DopplerLight :EngineControlle
r

:Engine
SpeedHistory:

HistogramView

smoother:
DigitalFilter

SpeedView:
TextView

TrainSpeed:

Speed

«PAOpenLoad»
{ PArespTime=(20, 'ms'); PApriority = 10;

PAoccurrence = ('periodic', 10, 'ms', 500, 'us'); }

setSpeed(s: real);

«PAStep»
{ PArespTime= ('ave', 2, 'ms');

 PArespTIme = ('max, 4, 'ms'); }

speed = f ilterData(s)

par

«PAStep»
{ PArespTime= ('ave', 500 'us');

 PArespTIme = ('max, 800, 'us'); }

control()

actual = getSpeed()

setSpeed(adjustment)

«PAOpenLoad»

{ PArespTime=(5, 'ms'); PApriority = 20;
PAoccurrence = ('periodic', 100, 'ms', 500, 'us'); }

«PAStep»

{ PArespTime= ('ave', 2 'ms'); }
«PAStep»

{ PArespTime= ('ave', 1, 'ms'); }

display()

getSpeed()

«PAOpenLoad»

{ PArespTime=(3, 'ms'); PApriority = 100;

PAoccurrence = ('periodic', 100, 'ms', 500, 'us'); }

«PAStep»

{ PArespTime= ('ave', 2 'ms'); }

update()

getSpeed()

«PAOpenLoad»
{ PArespTime=(5, 'ms'); PApriority = 40;

PAoccurrence = ('periodic', 100, 'ms', 500, 'us'); }

«PAStep»

{ PArespTime= ('ave', 2 'ms'); }

Real-Time UML127 © Telelogic AB

GIGO

• Select the appropriate stereotypes and tags of the schedulability
model to match the kind of analysis desired

– Global RMA

• Elements: active objects, resources

• Tags: execution time, deadline, period, priority, blocking time, priority ceiling

– Detailed RMA

• Elements: active objects, resources, actions, events, scenarios, scenario

steps, messages

• Tags: execution time, deadline, period, priority, blocking time, priority ceiling

– Simulation

• Depends on particular approach

– etc

Real-Time UML128 © Telelogic AB

Model Processing

UML Modeling Tool Model Analysis Tool

−≤

+++

−

−∑ 12...max
1

1

1

1

1 n

n

n

n
j

j n
T

B

T

B

T

C

Model Conversion

Inverse Model

Conversion

Modeler

User Model

Analysis Method Provider

Analytic Techinques

Validated User Model

Application System

Modeler

Analysis Configuration

Paramers

QoS Properties

Real-Time UML129 © Telelogic AB

HarmonyHarmony™™

Systems to Software Systems to Software

ProcessProcess

Real-Time UML130 © Telelogic AB

Harmony Process Hybrid Spiral (General form)

Analysis

Design

Implementation

Testing

Increment Review

(“Party”)

Incremental

Development Cycle

Requirements & Test Scenarios

System

Acceptance

Requirements

Analysis

Systems

Engineering

Change Request

Harmony Hybrid Spiral Process

Test Scenarios

Model Artifacts

Model Artifacts

Systems

Analysis &

Architecture

M
o
d
e
l
R
e
p
o
s
it
o
ry

Internally

Validated System

Real-Time UML131 © Telelogic AB

Harmony-SW Process

Mechanistic

Design

Detailed

Design

Translation
Unit

Testing
Integration

Testing

Iterative

Prototypes
Architectural

Design
Object

Analysis

Requirements

Definition

Validation

Testing

Validation

(Party)

Increment Review

Real-Time UML132 © Telelogic AB

Microcycle Flow

defines the properties of all
acceptable solutions

specifies a
particular “optimal”
solution

translates model
into executable code and

constructs working
architectural pieces of

prototype

Integrates architectural
pieces into prototype and

validates against prototype
mission

Project planning and
on-going assessment
and replanning

Analysis

Design

Implementation

Testing

Increment Review

(“Party”)

Incremental

Development Cycle

Real-Time UML133 © Telelogic AB

Harmony Incremental Spiral Workflows

Real-Time UML134 © Telelogic AB

References (For white papers see www.ilogix.com)

